月下旬更新速递丨 实战场景深化、集成能力升级与开发进阶

初冬来临,一波热气腾腾的更新也准时抵达!我们聚焦实战技巧、集成增强与开发进阶,一系列新功能与新教程,助你在数据分析与系统开发的效率上再进一步。

一、实战技巧精讲

雷达图:多维度数据的“透视镜”,3步读懂数据真相》→ 聚焦雷达图核心应用场景,快速掌握多对象、多维度数据的可视化分析方法。

用图表解锁你的生活“数据密码”!》→ 探索图表在日常场景中的应用,让数据解读更直观、更具操作性。

二、直播上线

2025新特性实战解读(上)数据分析效率倍增秘籍》→ 解析2025新特性落地路径,助力实现数据分析效率成倍提升。

三、技术经验分享

【专家分享】数据排序的“权力游戏”:优先级规则决定谁先谁后》→解读高级排序的业务配置逻辑,让关键数据始终处于优先展示位置。

四、二次开发视频

扩展包开发知识点——前端改造》→从需求分析入手到最终实现的全流程讲解,帮助您快速入门上手Smartbi前端改造。

五、任务持续上线

【初级任务】解锁生活“数据密码”,可视化创意实践任务》→发起可视化创意任务,推动数据表达更生动、更具趣味性。

【初级任务】玩转雷达图解数据,200麦豆等你拿!》→推出雷达图实战任务,以激励方式提升多维数据分析技能。

六、全新素材上线

AD域(LDAP/LDAPS)登录验证V2》→扩展域账号登录支持,实现与企业Windows认证体系无缝对接。

数据模型:对接RestfulAPI接口》→打通数据模型与RestfulAPI对接通道,提升系统集成与数据获取效率。

计划任务:定时清空用户属性缓存→引入缓存自动清理机制,确保权限变更实时生效、业务数据及时更新。

用户同步:BI系统自定义用户所属组》→优化用户组同步逻辑,实现自定义组信息自动识别与补全。

审核流程:可以调用自助ETL》→增强审核流程集成能力,支持在用户任务节点直接调用自助ETL过程。

麦粉社区
>
帖子详情

【AI每日一学】机器学习中的几种常见的学习方式与区别

AIChat 发表于 2025-7-14 11:00
发表于 2025-7-14 11:00:27

麦粉紧急集合!AI实战落地系列第十六弹高速发车!


        上回我们见证了DeepSeek-R1的推理引擎升级,就像给跑车换装了顶级涡轮增压。而今天要带大家掌握的是“驾驶技术”的本质突破——当数据道路错综复杂,如何选择最佳行驶模式?答案就在机器学习四大学习方式的战略切换中!


         按照老规矩,先来知识巩固小测试,检验大家对上一期“模型升级”的掌握程度!小福利:一周内答对的前三名的麦粉,奖励 20麦豆!答案藏在上期神帖【DeepSeek-R1-0528模型升级:推理与生态的双重升级】中~


AI知识问答(知识巩固)


1、DeepSeek-R1-0528在数学推理测试中的关键提升是什么?


A. 幻觉率降低50%


B. AIME 2025准确率从70%跃至87.5%


C. 代码生成准确率达90%


D. 支持128K上下文


2、新版模型为降低金融场景风险,重点优化了哪项能力?


A. 长文本生成


B. 工具调用


C. 幻觉控制


D. 多端兼容


3、DeepSeek-R1开源策略中,赋能小模型开发的关键动作是?


A. 提供128K上下文版本


B. 蒸馏训练的Qwen3-8B模型性能超原版10%


C. 支持Function Calling


D. 免费开放API


 


         通过这场测试,相信大家对“模型升级”已经驾轻就熟啦! 现在,是时候揭开AI最底层的学习哲学——面对不同数据路况,四大学习方式如何各显神通?今日干货直接拉满,让我们一起开启这场知识盛宴!


简单总结一下机器学习中的几种常见的学习方式与区别(今日学习)


机器学习中常见学习方式及其区别如下:


监督学习


-概述:使用标记数据训练,数据有输入特征和对应的输出标签,模型学习两者映射关系用于预测。


-应用:主要用于分类和回归任务。


-特点:预测准确性高,但需大量标记数据,数据标注成本高。


 


无监督学习


-概述:用未标记数据训练,模型发现数据内在结构和模式。


-应用:常用于聚类、降维和发现数据异常点等。


-特点:能处理大量未标记数据,发现数据潜在规律,但结果解释性相对较差。


 


 半监督学习


-概述:结合少量标记数据和大量未标记数据训练,先利用标记数据学习,再借助未标记数据优化模型。


-应用:适用于标记数据获取困难,同时存在大量未标记数据的场景。


-特点:在标记数据有限时可提高模型性能,减少标注成本,但模型训练复杂程度增加。


 


 自监督学习


-概述:无监督学习变体,通过在数据自身定义监督信号学习特征表示。


-应用:在自然语言处理和计算机视觉领域用于预训练模型,为后续任务提供特征。


-特点:能利用大规模未标记数据学习通用特征,减少对人工标注数据的依赖,但自监督任务设计需结合具体数据和应用场景。


 


主要区别



  • 监督学习依赖标记数据,目标明确,用于预测特定输出;

  • 无监督学习处理未标记数据,侧重发现数据内部结构;

  • 半监督学习结合两者,平衡数据利用和标注成本;

  • 自监督学习通过自我监督信号学习,在一些领域能有效利用未标记数据进行特征预训练。

发表于 2025-7-14 13:56:33
答案是 BCB
打赏人数1麦豆 +20 收起 理由
Smartbi社区管理员 + 20

查看全部打赏


回复

使用道具 举报

发表于 2025-7-15 09:00:54
B C B
打赏人数1麦豆 +20 收起 理由
Smartbi社区管理员 + 20

查看全部打赏


回复

使用道具 举报

发表于 2025-7-15 09:12:47

答案  BCB
打赏人数1麦豆 +20 收起 理由
Smartbi社区管理员 + 20

查看全部打赏


回复

使用道具 举报

发表于 2025-8-5 13:07:12

答案是 BCB

回复

使用道具 举报

高级模式
B Color Image Link Quote Code Smilies
您需要登录后才可以回帖 登录 | 立即注册

7回帖数 0关注人数 1546浏览人数
最后回复于:2025-8-5 13:07
快速回复 返回顶部 返回列表