六月下旬全新资源上线!丨 解锁高效能实战方案

更新亮点:本次新增6大专题10项资源,更有王炸课程重磅登场,点击标题了解!(参与互动赢取麦豆,解锁更多内容)

王炸专区:场景化数据分析实战

一站式贯通数据驱动全流程,从需求洞察→数仓开发→模型构建→可视化呈现,手把手带你构建决策引擎,助你秒变企业决策智多星!

二、实战技巧分享

即席/透视的逆袭之路:从卡顿到秒出→ 性能优化实战,实现报表秒级响应!

体验中心焕新一“夏”,全新导览页及新DEMO上线!→ 抢先体验夏季更新DEMO!

速看!明细/汇总/交叉表的实现秘籍→ 高效构建复杂报表指南

三、开发技能突破

视频课《仪表盘图片鼠标提示几行代码,让你的仪表盘“会说话”!

视频课《仪表盘宏开发技巧→ 解锁宏开发技巧和注意事项

四、直播上线

直播《交互式仪表盘最佳实践解锁可视化大屏最佳实践技巧

五、AI每日一学

人工智能三驾马车:算法、算力与数据→ 深度解析AI核心支柱

通俗的讲一下神经网络模型的基本组成、工作原理、工作类型和生活应用场景→ 从基础到场景实战

六、资源上新

插件《安全检测→ 一键加固系统安全防护

麦粉社区
>
帖子详情

【AI每日一学】简单总结一下机器学习中的几种常见的学习方式与...

AIChat 发表于 昨天 11:00

麦粉紧急集合!AI实战落地系列第十六弹高速发车!


        上回我们见证了DeepSeek-R1的推理引擎升级,就像给跑车换装了顶级涡轮增压。而今天要带大家掌握的是“驾驶技术”的本质突破——当数据道路错综复杂,如何选择最佳行驶模式?答案就在机器学习四大学习方式的战略切换中!


         按照老规矩,先来知识巩固小测试,检验大家对上一期“模型升级”的掌握程度!小福利:一周内答对的前三名的麦粉,奖励 20麦豆!答案藏在上期神帖【DeepSeek-R1-0528模型升级:推理与生态的双重升级】中~


AI知识问答(知识巩固)


1、DeepSeek-R1-0528在数学推理测试中的关键提升是什么?


A. 幻觉率降低50%


B. AIME 2025准确率从70%跃至87.5%


C. 代码生成准确率达90%


D. 支持128K上下文


2、新版模型为降低金融场景风险,重点优化了哪项能力?


A. 长文本生成


B. 工具调用


C. 幻觉控制


D. 多端兼容


3、DeepSeek-R1开源策略中,赋能小模型开发的关键动作是?


A. 提供128K上下文版本


B. 蒸馏训练的Qwen3-8B模型性能超原版10%


C. 支持Function Calling


D. 免费开放API


 


         通过这场测试,相信大家对“模型升级”已经驾轻就熟啦! 现在,是时候揭开AI最底层的学习哲学——面对不同数据路况,四大学习方式如何各显神通?今日干货直接拉满,让我们一起开启这场知识盛宴!


简单总结一下机器学习中的几种常见的学习方式与区别(今日学习)


机器学习中常见学习方式及其区别如下:


监督学习


-概述:使用标记数据训练,数据有输入特征和对应的输出标签,模型学习两者映射关系用于预测。


-应用:主要用于分类和回归任务。


-特点:预测准确性高,但需大量标记数据,数据标注成本高。


 


无监督学习


-概述:用未标记数据训练,模型发现数据内在结构和模式。


-应用:常用于聚类、降维和发现数据异常点等。


-特点:能处理大量未标记数据,发现数据潜在规律,但结果解释性相对较差。


 


 半监督学习


-概述:结合少量标记数据和大量未标记数据训练,先利用标记数据学习,再借助未标记数据优化模型。


-应用:适用于标记数据获取困难,同时存在大量未标记数据的场景。


-特点:在标记数据有限时可提高模型性能,减少标注成本,但模型训练复杂程度增加。


 


 自监督学习


-概述:无监督学习变体,通过在数据自身定义监督信号学习特征表示。


-应用:在自然语言处理和计算机视觉领域用于预训练模型,为后续任务提供特征。


-特点:能利用大规模未标记数据学习通用特征,减少对人工标注数据的依赖,但自监督任务设计需结合具体数据和应用场景。


 


主要区别



  • 监督学习依赖标记数据,目标明确,用于预测特定输出;

  • 无监督学习处理未标记数据,侧重发现数据内部结构;

  • 半监督学习结合两者,平衡数据利用和标注成本;

  • 自监督学习通过自我监督信号学习,在一些领域能有效利用未标记数据进行特征预训练。

发表于 昨天 13:56
答案是 BCB
回复

使用道具 举报

高级模式
B Color Image Link Quote Code Smilies
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

1回帖数 0关注人数 67浏览人数
最后回复于:昨天 13:56
快速回复 返回顶部 返回列表