九月下旬更新速递丨 AI赋能、技术实战与智能探索

金秋九月,下旬更新携AI发布会回放、丰富实战案例与进阶开发资源强势登场!助您深化技术理解,加速智能应用落地!

重点推荐Smartbi AIChat V4发布会圆满落幕!发布会精彩内容已完整上架,随点随看,深度回顾!共同步入智能新纪元!点击观看Smartbi AIChat V4发布会全程回放

麦学堂同步上架,加速学习

【Smartbi AIChat全新升级发布会根据不同篇章提炼上架,方便您按需定位,快速直达重点环节,高效吸收核心内容!

十分钟完整体验AIchat→ 只要10分钟时间,即可使用自己的本地数据快速体验AIChat所有功能。

一、任务持续上线

场景实战系列任务:数据处理,赢取278麦豆!通过实战任务巩固技能,真正掌握数据驱动的企业决策全流程

【BI知识闯关】数据回写填报太头疼?方案请收好!》→破解填报难题,提升数据处理效率。

【AI每日一学知识巩固】为什么Python 是目前人工智能领域最常用的编程语言》→深入解析Python在AI领域的优势,巩固编程基础。

二、实战技巧分享

数据回写填报太头疼?方案请收好!》→聚焦六大常见回写场景,拆解每类场景的实现思路,带您清晰掌握 Smartbi 数据回写的实操逻辑。

、开发技能突破

自定义计划任务案例 进一步了解自定义计划任务,从而提升自定义任务的开发效率和能力。

四、AI每日一学

【AI每日一学】为什么Python 是目前人工智能领域最常用的编程语言》→探讨Python为何能成为人工智能领域最常用的编程语言。

【AI每日一学】简单总结一下AI Agent的五个发展阶段从简单的指令响应到复杂的多智能体协作,AI Agent正逐步向着更拟人、更通用的方向演进。

五、全新素材上线

科技指标卡底座(二)→科技感视觉主题,深色科技风跃动,光线流动引爆焦点!

按需管控:业务人员导出最大行数设置在“导出规则”中,“导出动作”增加“部分导出”的选项

屏蔽“我的工作区”根据角色控制,屏蔽产品中“我的工作区”目录的功能,同时,对于该模块下的资源进行“保存”或者“另存为”,以及“移动到”时,对应的弹出框都不会显示“我的工作区”目录。

数据预警:异常数据可以落地到知识库在“预警推送”中,“推送渠道”增加“数据库”的选项,可以把异常数据存储到“知识库”的表中。

同一账号不能同时登录同一账号不能同时登录,后登录踢出先登录。


六、行业方案上线

汽车制造-财务数字化分析决策平台方案“核账型财务”向“经营型财务”升级

汽车制造-媒介平台ROI实时分析需求解决方案在激烈的市场竞争中,汽车行业对广告投放精准性要求极高,打破决策延时,敏捷响应时长,解决资源浪费,提升广告投放ROI!

为进一步提升认证服务的质量与体验,我们对认证业务进行全面优化升级。更多详情请看→Smartbi认证考试优化升级公告


麦粉社区
>
帖子详情

【AI每日一学】机器学习中的几种常见的学习方式与区别

AIChat 发表于 2025-7-14 11:00
发表于 2025-7-14 11:00:27

麦粉紧急集合!AI实战落地系列第十六弹高速发车!


        上回我们见证了DeepSeek-R1的推理引擎升级,就像给跑车换装了顶级涡轮增压。而今天要带大家掌握的是“驾驶技术”的本质突破——当数据道路错综复杂,如何选择最佳行驶模式?答案就在机器学习四大学习方式的战略切换中!


         按照老规矩,先来知识巩固小测试,检验大家对上一期“模型升级”的掌握程度!小福利:一周内答对的前三名的麦粉,奖励 20麦豆!答案藏在上期神帖【DeepSeek-R1-0528模型升级:推理与生态的双重升级】中~


AI知识问答(知识巩固)


1、DeepSeek-R1-0528在数学推理测试中的关键提升是什么?


A. 幻觉率降低50%


B. AIME 2025准确率从70%跃至87.5%


C. 代码生成准确率达90%


D. 支持128K上下文


2、新版模型为降低金融场景风险,重点优化了哪项能力?


A. 长文本生成


B. 工具调用


C. 幻觉控制


D. 多端兼容


3、DeepSeek-R1开源策略中,赋能小模型开发的关键动作是?


A. 提供128K上下文版本


B. 蒸馏训练的Qwen3-8B模型性能超原版10%


C. 支持Function Calling


D. 免费开放API


 


         通过这场测试,相信大家对“模型升级”已经驾轻就熟啦! 现在,是时候揭开AI最底层的学习哲学——面对不同数据路况,四大学习方式如何各显神通?今日干货直接拉满,让我们一起开启这场知识盛宴!


简单总结一下机器学习中的几种常见的学习方式与区别(今日学习)


机器学习中常见学习方式及其区别如下:


监督学习


-概述:使用标记数据训练,数据有输入特征和对应的输出标签,模型学习两者映射关系用于预测。


-应用:主要用于分类和回归任务。


-特点:预测准确性高,但需大量标记数据,数据标注成本高。


 


无监督学习


-概述:用未标记数据训练,模型发现数据内在结构和模式。


-应用:常用于聚类、降维和发现数据异常点等。


-特点:能处理大量未标记数据,发现数据潜在规律,但结果解释性相对较差。


 


 半监督学习


-概述:结合少量标记数据和大量未标记数据训练,先利用标记数据学习,再借助未标记数据优化模型。


-应用:适用于标记数据获取困难,同时存在大量未标记数据的场景。


-特点:在标记数据有限时可提高模型性能,减少标注成本,但模型训练复杂程度增加。


 


 自监督学习


-概述:无监督学习变体,通过在数据自身定义监督信号学习特征表示。


-应用:在自然语言处理和计算机视觉领域用于预训练模型,为后续任务提供特征。


-特点:能利用大规模未标记数据学习通用特征,减少对人工标注数据的依赖,但自监督任务设计需结合具体数据和应用场景。


 


主要区别



  • 监督学习依赖标记数据,目标明确,用于预测特定输出;

  • 无监督学习处理未标记数据,侧重发现数据内部结构;

  • 半监督学习结合两者,平衡数据利用和标注成本;

  • 自监督学习通过自我监督信号学习,在一些领域能有效利用未标记数据进行特征预训练。

发表于 2025-7-14 13:56:33
答案是 BCB
打赏人数1麦豆 +20 收起 理由
Smartbi社区管理员 + 20

查看全部打赏


回复

使用道具 举报

发表于 2025-7-15 09:00:54
B C B
打赏人数1麦豆 +20 收起 理由
Smartbi社区管理员 + 20

查看全部打赏


回复

使用道具 举报

发表于 2025-7-15 09:12:47

答案  BCB
打赏人数1麦豆 +20 收起 理由
Smartbi社区管理员 + 20

查看全部打赏


回复

使用道具 举报

发表于 2025-8-5 13:07:12

答案是 BCB

回复

使用道具 举报

高级模式
B Color Image Link Quote Code Smilies
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

7回帖数 0关注人数 978浏览人数
最后回复于:2025-8-5 13:07
快速回复 返回顶部 返回列表