九月下旬更新速递丨 AI赋能、技术实战与智能探索

金秋九月,下旬更新携AI发布会回放、丰富实战案例与进阶开发资源强势登场!助您深化技术理解,加速智能应用落地!

重点推荐Smartbi AIChat V4发布会圆满落幕!发布会精彩内容已完整上架,随点随看,深度回顾!共同步入智能新纪元!点击观看Smartbi AIChat V4发布会全程回放

麦学堂同步上架,加速学习

【Smartbi AIChat全新升级发布会根据不同篇章提炼上架,方便您按需定位,快速直达重点环节,高效吸收核心内容!

十分钟完整体验AIchat→ 只要10分钟时间,即可使用自己的本地数据快速体验AIChat所有功能。

一、任务持续上线

场景实战系列任务:数据处理,赢取278麦豆!通过实战任务巩固技能,真正掌握数据驱动的企业决策全流程

【BI知识闯关】数据回写填报太头疼?方案请收好!》→破解填报难题,提升数据处理效率。

【AI每日一学知识巩固】为什么Python 是目前人工智能领域最常用的编程语言》→深入解析Python在AI领域的优势,巩固编程基础。

二、实战技巧分享

数据回写填报太头疼?方案请收好!》→聚焦六大常见回写场景,拆解每类场景的实现思路,带您清晰掌握 Smartbi 数据回写的实操逻辑。

、开发技能突破

自定义计划任务案例 进一步了解自定义计划任务,从而提升自定义任务的开发效率和能力。

四、AI每日一学

【AI每日一学】为什么Python 是目前人工智能领域最常用的编程语言》→探讨Python为何能成为人工智能领域最常用的编程语言。

【AI每日一学】简单总结一下AI Agent的五个发展阶段从简单的指令响应到复杂的多智能体协作,AI Agent正逐步向着更拟人、更通用的方向演进。

五、全新素材上线

科技指标卡底座(二)→科技感视觉主题,深色科技风跃动,光线流动引爆焦点!

按需管控:业务人员导出最大行数设置在“导出规则”中,“导出动作”增加“部分导出”的选项

屏蔽“我的工作区”根据角色控制,屏蔽产品中“我的工作区”目录的功能,同时,对于该模块下的资源进行“保存”或者“另存为”,以及“移动到”时,对应的弹出框都不会显示“我的工作区”目录。

数据预警:异常数据可以落地到知识库在“预警推送”中,“推送渠道”增加“数据库”的选项,可以把异常数据存储到“知识库”的表中。

同一账号不能同时登录同一账号不能同时登录,后登录踢出先登录。


六、行业方案上线

汽车制造-财务数字化分析决策平台方案“核账型财务”向“经营型财务”升级

汽车制造-媒介平台ROI实时分析需求解决方案在激烈的市场竞争中,汽车行业对广告投放精准性要求极高,打破决策延时,敏捷响应时长,解决资源浪费,提升广告投放ROI!

为进一步提升认证服务的质量与体验,我们对认证业务进行全面优化升级。更多详情请看→Smartbi认证考试优化升级公告


麦粉社区
>
帖子详情

【AI每日一学】通俗的讲一下神经网络模型的基本组成、工作原...

AIChat 发表于 2025-6-17 09:59
发表于 2025-6-17 09:59:44

麦粉们!AI实战落地第十四弹发车!


         昨天,咱们成功解锁了驱动AI的“三驾马车”(算法、算力、数据),这就好比给一辆高性能跑车配齐了顶级装备!那今天,咱们就深入跑车内部,来解剖它的“智能生物”——神经网络,这可是让AI真正“学会”思考的核心引擎!


        不过,在开启今天关于神经网络模型的探索之前,照例先检验大家对昨天“三驾马车”知识的掌握程度。发布后三天内全对的前三名麦粉,奖励20麦豆!答案就藏在上期宝藏帖【了解一下人工智能三驾马车:算法、算力与数据】中,快去找找吧~


AI知识问答(知识巩固)


1、在“三驾马车”中,哪一项被比喻为AI的“智慧核心”和“大脑”,赋予系统决策、学习与泛化能力?


A. 算力


B. 数据


C. 算法


D. 云计算


2、以下哪种硬件被特别强调为AI的“动力引擎”,其并行计算能力比CPU提升数十倍,并用于加速大模型训练?


A. CPU (中央处理器)


B. GPU/TPU (图形处理器/张量处理器)


C. FPGA (现场可编程门阵列)


D. ASIC (专用集成电路)


3、在数据要素部分,提到了一种技术可以在保护用户隐私的前提下实现不同机构间数据的共享训练,这种技术是什么?


A. 联邦学习 (Federated Learning)


B. 强化学习 (Reinforcement Learning)


C. 迁移学习 (Transfer Learning)


D. 生成对抗网络 (GAN)


 


        理解了驱动AI发展的核心要素(算法、算力、数据)如何协同工作后,是时候聚焦于AI系统本身是如何“思考”和“学习”的。装备(三驾马车)已经就位,现在就来瞧瞧“驾驶员”神经网络是如何“驾驶”AI这辆跑车的!


通俗的讲一下神经网络模型的基本组成、工作原理、工作类型和生活应用场景(今日学习


神经网络模型受大脑神经元启发,让计算机从数据中学习规律,实现图像识别等任务,主要包含以下内容:


基本组成:


神经元:


神经网络的基础,接收并处理输入后产生输出,如在手写数字识别中,负责判断图像局部特征。


 


层:


由神经元构成,输入层接收原始数据,隐藏层提取变换数据特征,输出层给出最终结果。


 


工作原理:


信息传递:


数据从输入层经隐藏层处理后到输出层,神经元对数据加权求和,经激活函数决定信息传递。


 


学习过程:


通过大量训练数据,依据预测与真实结果差异,用反向传播算法调整神经元连接权重和偏置,如训练猫狗图像识别时优化权重。


 


主要类型:


多层感知机(MLP):


基础网络,全连接结构,用于简单分类和回归,如房价预测。


 


卷积神经网络(CNN):


针对图像、音频等,借特殊结构提取特征,用于图像识别、医学影像检测。


 


循环神经网络(RNN):


处理序列数据,可利用历史信息决策,改进版LSTM和GRU能更好处理长序列依赖,用于语言翻译。


 


神经网络模型在生活中应用广泛:


图像识别用于安防、医疗、自动驾驶;语音识别与合成助力语音助手交互;电商和视频平台借推荐系统推送个性化内容;金融领域用于风险预测与投资决策;智能翻译工具提升语言翻译质量。

发表于 2025-6-17 11:09:48

回答:CBA

打赏人数1麦豆 +20 收起 理由
Smartbi社区管理员 + 20

查看全部打赏


回复

使用道具 举报

发表于 2025-6-18 08:57:43
答案是 CBA
打赏人数1麦豆 +20 收起 理由
Smartbi社区管理员 + 20 太棒了,给你32个赞,么么哒

查看全部打赏


回复

使用道具 举报

发表于 2025-6-18 17:11:50
答案:CBA
打赏人数1麦豆 +20 收起 理由
Smartbi社区管理员 + 20

查看全部打赏


回复

使用道具 举报

发表于 2025-6-19 17:28:40
答案:CBA
回复

使用道具 举报

发表于 2025-7-4 21:08:31
回答:CBA
回复

使用道具 举报

高级模式
B Color Image Link Quote Code Smilies
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

8回帖数 0关注人数 1012浏览人数
最后回复于:2025-7-4 21:08
快速回复 返回顶部 返回列表