一月下旬新内容速递丨地理智能、函数实战与新春启航

年末将至,智慧不停!一月下旬更新聚焦地理智能、函数实战、二次开发与新春趣味活动,助你在数据探索中持续突破!

一、图表应用精选

【地图】GIS地图:告别平面报表,激活你的业务“地理智能”》→学习GIS地图应用,实现业务数据与地理信息的深度融合。
【散点图】商业世界的“关系侦探”》→掌握散点图在商业分析中的实战应用,洞察变量间的隐藏关系。

二、二次开发视频更新

Excel导入模板扩展数据处理类》→如何让导入的“1”和“0”自动变成“是”和“否”

三、函数应用进阶

【函数课堂】Fixed :数据计算中的“定海神针”》→系统讲解Fixed函数的使用场景与技巧,助你掌握数据计算的稳定性关键。

四、插件更新

离线导出功能集成阿里云OSS》→新增离线导出至阿里云OSS功能,提升数据导出安全性与存储灵活性。

五、新年活动进行中

新年第②弹|新春知识擂台:智慧解码,喜迎新年!》→新春特别活动,智慧解码挑战,喜迎新年好运!

六、任务持续上线

【图表应用】GIS地图诊断市场盈亏,制定精准策略》→掌握GIS地图分析技能,精准诊断市场表现,助力策略制定。
【函数】Fixed函数实战任务》→深入Fixed函数实战应用,提升数据计算稳定性和精准度。
【图表应用】散点图:你的“广告效果侦查局”已上线!》→运用散点图分析广告效果,成为数据驱动的“侦查高手”。
【新年活动】智慧解码擂台:挑战你的数据脑力!》→参与数据解码挑战,激活你的逻辑思维与分析能力。


地理智能赋能业务,函数实战夯实基础,新春活动智趣相融——一月下旬,与数据共赴新年新征程!

麦粉社区
>
帖子详情

【AI每日一学】通俗的讲一下神经网络模型的基本组成、工作原...

AIChat 发表于 2025-6-17 09:59
发表于 2025-6-17 09:59:44

麦粉们!AI实战落地第十四弹发车!


         昨天,咱们成功解锁了驱动AI的“三驾马车”(算法、算力、数据),这就好比给一辆高性能跑车配齐了顶级装备!那今天,咱们就深入跑车内部,来解剖它的“智能生物”——神经网络,这可是让AI真正“学会”思考的核心引擎!


        不过,在开启今天关于神经网络模型的探索之前,照例先检验大家对昨天“三驾马车”知识的掌握程度。发布后三天内全对的前三名麦粉,奖励20麦豆!答案就藏在上期宝藏帖【了解一下人工智能三驾马车:算法、算力与数据】中,快去找找吧~


AI知识问答(知识巩固)


1、在“三驾马车”中,哪一项被比喻为AI的“智慧核心”和“大脑”,赋予系统决策、学习与泛化能力?


A. 算力


B. 数据


C. 算法


D. 云计算


2、以下哪种硬件被特别强调为AI的“动力引擎”,其并行计算能力比CPU提升数十倍,并用于加速大模型训练?


A. CPU (中央处理器)


B. GPU/TPU (图形处理器/张量处理器)


C. FPGA (现场可编程门阵列)


D. ASIC (专用集成电路)


3、在数据要素部分,提到了一种技术可以在保护用户隐私的前提下实现不同机构间数据的共享训练,这种技术是什么?


A. 联邦学习 (Federated Learning)


B. 强化学习 (Reinforcement Learning)


C. 迁移学习 (Transfer Learning)


D. 生成对抗网络 (GAN)


 


        理解了驱动AI发展的核心要素(算法、算力、数据)如何协同工作后,是时候聚焦于AI系统本身是如何“思考”和“学习”的。装备(三驾马车)已经就位,现在就来瞧瞧“驾驶员”神经网络是如何“驾驶”AI这辆跑车的!


通俗的讲一下神经网络模型的基本组成、工作原理、工作类型和生活应用场景(今日学习


神经网络模型受大脑神经元启发,让计算机从数据中学习规律,实现图像识别等任务,主要包含以下内容:


基本组成:


神经元:


神经网络的基础,接收并处理输入后产生输出,如在手写数字识别中,负责判断图像局部特征。


 


层:


由神经元构成,输入层接收原始数据,隐藏层提取变换数据特征,输出层给出最终结果。


 


工作原理:


信息传递:


数据从输入层经隐藏层处理后到输出层,神经元对数据加权求和,经激活函数决定信息传递。


 


学习过程:


通过大量训练数据,依据预测与真实结果差异,用反向传播算法调整神经元连接权重和偏置,如训练猫狗图像识别时优化权重。


 


主要类型:


多层感知机(MLP):


基础网络,全连接结构,用于简单分类和回归,如房价预测。


 


卷积神经网络(CNN):


针对图像、音频等,借特殊结构提取特征,用于图像识别、医学影像检测。


 


循环神经网络(RNN):


处理序列数据,可利用历史信息决策,改进版LSTM和GRU能更好处理长序列依赖,用于语言翻译。


 


神经网络模型在生活中应用广泛:


图像识别用于安防、医疗、自动驾驶;语音识别与合成助力语音助手交互;电商和视频平台借推荐系统推送个性化内容;金融领域用于风险预测与投资决策;智能翻译工具提升语言翻译质量。

发表于 2025-6-17 11:09:48

回答:CBA

打赏人数1麦豆 +20 收起 理由
Smartbi社区管理员 + 20

查看全部打赏


回复

使用道具 举报

发表于 2025-6-18 08:57:43
答案是 CBA
打赏人数1麦豆 +20 收起 理由
Smartbi社区管理员 + 20 太棒了,给你32个赞,么么哒

查看全部打赏


回复

使用道具 举报

发表于 2025-6-18 17:11:50
答案:CBA
打赏人数1麦豆 +20 收起 理由
Smartbi社区管理员 + 20

查看全部打赏


回复

使用道具 举报

发表于 2025-6-19 17:28:40
答案:CBA
回复

使用道具 举报

发表于 2025-7-4 21:08:31
回答:CBA
回复

使用道具 举报

高级模式
B Color Image Link Quote Code Smilies
您需要登录后才可以回帖 登录 | 立即注册

8回帖数 0关注人数 1632浏览人数
最后回复于:2025-7-4 21:08

社区

指南

快速回复 返回顶部 返回列表