十二月下旬内容焕新丨技能实战、智慧提效与生态拓展

年终冲刺,进步不停!十二月下旬新内容聚焦技能实战、智慧提效、场景解析与开发拓展,助你在数据与智能的浪潮中更进一步!

一、场景化课程上线完结

驱动增长:汽车制造营销分析主题课程→聚焦汽车行业营销场景,学习如何利用数据驱动业务增长。

价值引擎:汽车制造财务分析主题课程→深入财务数据分析,助力企业价值挖掘与决策支持。

二、场景应用上线

【漏斗图】漏斗洞察:三分钟,看透流程的每一步→ 快速掌握漏斗分析,优化业务流程效率。

模型篇:如何构建支撑AlChat的证券数据模型》→ 解析证券行业数据模型构建,赋能AI助手智能基础。

【地图】先导篇:一眼看透数据在空间中的故事→ 入门地图可视化,发现数据背后的地理逻辑。

【地图】区域地图:直观对比,掌控全局→ 学习区域地图制作,实现跨区域数据对比分析。

三、技术经验分享

乱码大作战:从“乱码地狱”到“数据天堂”的爆“效”指南》→ 攻克数据乱码难题,带你高效实现数据质量的跃升。

四、二次开发视频

扩展包开发知识点——知识库升级以及查询对象》→ 深化扩展包开发能力,学习知识库升级与查询对象优化。

五、任务持续上线

【图表应用】绘制漏斗图,诊断转化瓶颈→ 学习漏斗图绘制,精准定位业务流程中的转化短板。

AlChat入门闯关计划 - 第二关》→ 继续AI助手探索之旅,掌握更智能的对话交互技能。

【图表应用】测测你是否真的“看懂”地图?》→ 检验地图图表理解能力,提升空间数据解读水平。

【场景实战系列】即席查询,赢取278麦豆!》→ 实战演练即席查询,灵活获取所需数据。

【场景实战系列】透视分析,赢取278麦豆!》→ 掌握数据透视技巧,实现多维度业务洞察。

【图表应用】区域地图在手,业绩分布一目了然→ 借助区域地图,直观掌握业务区域表现。

BI知识闯关】乱码大作战:从“乱码地狱”到“数据天堂”的爆“效”指南》→ 通过闯关巩固乱码处理知识,学以致用。

【调研】社区内容调研,1分钟即可得100麦豆!》→为了未来能为您提供更精彩的内容和活动,我们想聆听您的真实心声

六、全新素材上线

HTTP API接口测试工具》→ 提供便捷的接口测试支持,助力开发调试更高效。

七、互动活动开启

2025年售后服务问卷调研有奖活动》→ 参与调研反馈,助力产品优化,更有机会赢取好礼。

麦粉社区
>
帖子详情

【AI每日一学】了解一下人工智能三驾马车:算法、算力与数据

AIChat 发表于 2025-6-16 11:05
发表于 2025-6-16 11:05:33

麦粉们!AI实战落地第十三弹发车!


         前面我们深入拆解了Transformer这个驱动AI的“核心引擎”,理解了它如何赋予大模型语言理解和并行计算的能力。但引擎再强,也需要整体系统的支撑——就像一辆跑车,光有引擎还不够,还得有智慧的设计、充沛的动力和优质的燃料!


       照例,先来检验大家对前面Transformer知识的掌握程度。发布后三天内全对的前三名麦粉,奖励20麦豆!答案就藏在上期宝藏帖【详细的介绍一下-Transformer】中,快去找找吧~


AI知识小问答(知识巩固)


1、Transformer架构的核心组件是什么?


A. 循环神经网络(RNN)的时序处理单元


B. 卷积层(CNN)的特征提取机制


C. 自注意力机制(Self-Attention)


D. 池化层的降维操作


2、Transformer相比传统RNN的主要优势体现在哪个方面?


A. 只能处理短序列数据,避免过拟合


B. 依赖顺序计算,提高模型稳定性


C. 强大的并行计算能力,加速训练和推理


D. 仅适用于图像识别任务


3、Transformer在以下哪个应用领域表现最为突出?


A. 自然语言处理(如机器翻译和文本生成)


B. 音频信号压缩技术


C. 数据库管理优化


D. 物理传感器校准


 


        当我们通过Transformer解决了AI的“动力引擎”问题后,一个更宏大的命题浮现出来:什么让整个AI系统从引擎升级为智能生态?就像我们有了超级跑车的引擎,但还需要给它配上车身、燃料以及控制系统,才能让它真正在道路上飞驰,AI的进化同样依赖三大基石——算法、算力与数据的深度协同。今天,我们就跳出单一架构,探索这“三驾马车”如何制衡驱动技术革命⬇️


 


了解一下人工智能三驾马车:算法、算力与数据(今日学习)


人工智能的发展核心依赖算法、算力、数据三大要素,三者相互制衡、协同驱动技术迭代。


 


一、算法:AI的智慧核心


         算法作为AI的“大脑”,赋予系统决策、学习与泛化能力。从传统机器学习(如决策树)到深度学习(如Transformer),技术复杂度不断提升。例如,Transformer架构助力ChatGPT实现语言理解突破;迁移学习等技术则降低开发门槛,缩短医疗模型训练周期。


 


二、算力:AI的动力引擎


         算力是算法运行的硬件基础。GPU/TPU的并行计算能力比CPU提升数十倍,谷歌通过分布式TPU集群大幅加速大模型训练。应用场景中,自动驾驶需实时处理传感器数据,AlphaFold预测蛋白质结构依赖超算集群。但高能耗(如GPT-4训练耗电惊人)推动能效优化,云计算与边缘计算平衡成本与效率。


 


三、数据:AI的生长养料


        数据质量与规模直接决定AI性能。ImageNet的千万级标注图片推动计算机视觉发展,多模态数据(文本+图像)提升AI理解能力。实践中,自动驾驶需人工标注海量数据,联邦学习技术在保护隐私前提下实现数据共享训练,电商推荐系统则依赖用户行为数据提升精准度。


 


四、协同关系与未来趋势


        三者相互依存:复杂算法依赖强算力,算力升级推动算法创新;数据质量决定算法上限,算法可优化数据采集;边缘计算解决数据传输延迟问题。未来,算法轻量化适配loT设备,云计算实现算力普惠,量子计算或带来颠覆性突破;数据确权与交易兴起,多模态融合推动具身智能发展。


 


结语:


         算法、算力、数据的深度协同,是人工智能从工具智能迈向生态智能的关键,唯有三者平衡发展,才能释放技术最大价值。

发表于 2025-6-16 11:18:43
有什么新的功能介绍
回复

使用道具 举报

发表于 2025-6-16 13:47:16
本帖最后由 感恩的心 于 2025-6-18 09:00 编辑

答案是 CCA

打赏人数1麦豆 +20 收起 理由
Smartbi社区管理员 + 20

查看全部打赏


回复

使用道具 举报

发表于 2025-6-17 11:05:20
答案是 CCA
打赏人数1麦豆 +20 收起 理由
Smartbi社区管理员 + 20

查看全部打赏


回复

使用道具 举报

高级模式
B Color Image Link Quote Code Smilies
您需要登录后才可以回帖 登录 | 立即注册

5回帖数 0关注人数 1960浏览人数
最后回复于:2025-6-17 11:05
快速回复 返回顶部 返回列表