月下旬更新速递丨 实战场景深化、集成能力升级与开发进阶

初冬来临,一波热气腾腾的更新也准时抵达!我们聚焦实战技巧、集成增强与开发进阶,一系列新功能与新教程,助你在数据分析与系统开发的效率上再进一步。

一、实战技巧精讲

雷达图:多维度数据的“透视镜”,3步读懂数据真相》→ 聚焦雷达图核心应用场景,快速掌握多对象、多维度数据的可视化分析方法。

用图表解锁你的生活“数据密码”!》→ 探索图表在日常场景中的应用,让数据解读更直观、更具操作性。

二、直播上线

2025新特性实战解读(上)数据分析效率倍增秘籍》→ 解析2025新特性落地路径,助力实现数据分析效率成倍提升。

三、技术经验分享

【专家分享】数据排序的“权力游戏”:优先级规则决定谁先谁后》→解读高级排序的业务配置逻辑,让关键数据始终处于优先展示位置。

四、二次开发视频

扩展包开发知识点——前端改造》→从需求分析入手到最终实现的全流程讲解,帮助您快速入门上手Smartbi前端改造。

五、任务持续上线

【初级任务】解锁生活“数据密码”,可视化创意实践任务》→发起可视化创意任务,推动数据表达更生动、更具趣味性。

【初级任务】玩转雷达图解数据,200麦豆等你拿!》→推出雷达图实战任务,以激励方式提升多维数据分析技能。

六、全新素材上线

AD域(LDAP/LDAPS)登录验证V2》→扩展域账号登录支持,实现与企业Windows认证体系无缝对接。

数据模型:对接RestfulAPI接口》→打通数据模型与RestfulAPI对接通道,提升系统集成与数据获取效率。

计划任务:定时清空用户属性缓存→引入缓存自动清理机制,确保权限变更实时生效、业务数据及时更新。

用户同步:BI系统自定义用户所属组》→优化用户组同步逻辑,实现自定义组信息自动识别与补全。

审核流程:可以调用自助ETL》→增强审核流程集成能力,支持在用户任务节点直接调用自助ETL过程。

麦粉社区
>
帖子详情

学习数据挖掘需要那些基础知识?

数据挖掘 发表于 2019-11-12 10:18
发表于 2019-11-12 10:18:53

入门推荐你看《机器学习实战》,不需要你跑去学习算法和数据结构,不需要解析几何的知识,但是数理统计的基础你必须要有,期望、方差、常用的几种概率分布,尤其注意一下条件概率,因为朴素贝叶斯模型你一定要懂,线性代数至少你要明白矩阵乘法、行列式计算,再就是微积分知识,不然你看不懂所有基于梯度下降法的文献,行业内用的比较多的是c++,java和python,推荐你用python,很多模型不需要你造轮子,python有相关的第三方模块,很方便。

数据挖掘涉及的内容比较泛,机器学习、数据挖掘、人工智能,但实际上这些知识大多是相通的,机器学习实战这本书是我看的启蒙书里很好的一本了,该有的都有,难度较小,有理论有实践,可以较快的对各种知识有个大概的了解,但是想要长期在这个行业发展,还需要学习更多的知识,比如说提到回归模型,你不仅仅要知道最小二乘法,你还要想到怎么进行数据清洗、哪些数据需要清洗,怎么规范数据,数据是否过多,要不要进行归约和降维,采用哪种回归模型,精确度大致要达到什么水平,要不要考虑过拟合和欠拟合,要不要进行交叉验证,几折交叉验证效果好,如果回归模型不适用,有哪些备选方案。比如说决策树模型,书上简单的讲了个if-then就完了,按照什么规则生成树,怎么分层,要不要剪枝,最终的效果怎么样,造成误差的原因是模型太复杂还是太简单,怎么综合其他模型对决策树进行改进,数据的聚类方法用k均值还是DBSCAN,需要对数据进行分类的时候要考虑数据量大不大,SVM还是神经网络,数据量计算机吃不吃得消,一次吃不消该怎么做,等你对这些有了大致的了解之后,好好看看《统计学习方法》这本书,深入地了解一下理论部分,看一看核心部分的数学模型,看一看如何算法实现,着重理解一下拉格朗日微分法和拉格朗日对偶,解决等式约束和不等式约束很有用,这个也是使用智能算法尝试解决NP完全问题的一个结合点。

除了看书以外,其他时间全部用在学习编程上,python常用的numpy、matplotlib、scipy、sklearn、nltk这些包你都要大致了解怎么用,推荐你看看图灵程序设计丛书里的《python学习手册》《python自然语言处理》《python科学计算》,至少要知道怎么定义类、方法、属性,常用模块里有哪些好用的方法,常见的异常怎么排除,其他的在有时间的时候随用随学,至于算法和数据结构,有时间的话看看《算法导论》,肯定有所收获。


发表于 2020-6-15 11:10:18
学习中
回复

使用道具 举报

高级模式
B Color Image Link Quote Code Smilies
您需要登录后才可以回帖 登录 | 立即注册

1回帖数 0关注人数 9726浏览人数
最后回复于:2020-8-30 20:47
快速回复 返回顶部 返回列表