月下旬更新速递丨 实战场景深化、集成能力升级与开发进阶

初冬来临,一波热气腾腾的更新也准时抵达!我们聚焦实战技巧、集成增强与开发进阶,一系列新功能与新教程,助你在数据分析与系统开发的效率上再进一步。

一、实战技巧精讲

雷达图:多维度数据的“透视镜”,3步读懂数据真相》→ 聚焦雷达图核心应用场景,快速掌握多对象、多维度数据的可视化分析方法。

用图表解锁你的生活“数据密码”!》→ 探索图表在日常场景中的应用,让数据解读更直观、更具操作性。

二、直播上线

2025新特性实战解读(上)数据分析效率倍增秘籍》→ 解析2025新特性落地路径,助力实现数据分析效率成倍提升。

三、技术经验分享

【专家分享】数据排序的“权力游戏”:优先级规则决定谁先谁后》→解读高级排序的业务配置逻辑,让关键数据始终处于优先展示位置。

四、二次开发视频

扩展包开发知识点——前端改造》→从需求分析入手到最终实现的全流程讲解,帮助您快速入门上手Smartbi前端改造。

五、任务持续上线

【初级任务】解锁生活“数据密码”,可视化创意实践任务》→发起可视化创意任务,推动数据表达更生动、更具趣味性。

【初级任务】玩转雷达图解数据,200麦豆等你拿!》→推出雷达图实战任务,以激励方式提升多维数据分析技能。

六、全新素材上线

AD域(LDAP/LDAPS)登录验证V2》→扩展域账号登录支持,实现与企业Windows认证体系无缝对接。

数据模型:对接RestfulAPI接口》→打通数据模型与RestfulAPI对接通道,提升系统集成与数据获取效率。

计划任务:定时清空用户属性缓存→引入缓存自动清理机制,确保权限变更实时生效、业务数据及时更新。

用户同步:BI系统自定义用户所属组》→优化用户组同步逻辑,实现自定义组信息自动识别与补全。

审核流程:可以调用自助ETL》→增强审核流程集成能力,支持在用户任务节点直接调用自助ETL过程。

麦粉社区
>
帖子详情

python学习篇-pandas库(五)

数据挖掘 发表于 2019-12-17 17:56
发表于 2019-12-17 17:56:53
DataFrame常用基本操作
创建数据集df2
  1. import pandas as pd
  2. import numpy as np
  3. data = {'animal': ['cat', 'cat', 'snake', 'dog', 'dog', 'cat', 'snake', 'cat', 'dog', 'dog'],
  4.         'age': [2.5, 3, 0.5, np.nan, 5, 2, 4.5, np.nan, 7, 3],
  5.         'visits': [1, 3, 2, 3, 2, 3, 1, 1, 2, 1],
  6.         'priority': ['yes', 'yes', 'no', 'yes', 'no', 'no', 'no', 'yes', 'no', 'no']}

  7. labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']
  8. df2 = pd.DataFrame(data, index=labels)
复制代码
787865df891df29a53.png
1、预览数据
DataFrame.head(n):预览前n行数据
参数n为显示行数
  1. df2.head(3)
复制代码
390865df89327942dc.png
2、查看DataFrame的后3行数据
函数DataFrame.tail(n):预览后n行数据
参数n为显示行数

  1. df2.tail(3)
复制代码
656175df893a37fa1e.png
3、查看DataFrame索引
函数DataFrame.index
  1. df2.index
复制代码
228205df8940407287.png
4、查看DataFrame的列名
函数DataFrame.columns
  1. df2.columns
复制代码
913585df89474419d1.png
5、查看DataFrame的数值
函数DataFrame.values
  1. df2.values
复制代码
186275df894e5ee78f.png
6、查看DataFrame的统计数据
函数DataFrame.describe(include='all')
参数include:如果include='all',返回结果将包含各种类型的属性信息,比如字符串的唯一计数、出现次数、出现最多。
返回count:计数不包括nan值;mean:均值;std:方差;min:最小值;max:最大值
  1. df2.describe()
复制代码
217155df89586a312e.png
  1. df2.describe(include='all')
复制代码
217645df89a4db9615.png
7、DataFrame的转置
函数DataFrame.T
  1. df2.T
复制代码
412735df89aa50f454.png
8、对DataFrame进行排序
DataFrame.sort_values()
参数by:指定排序列名
参数ascending:指定排序方式,默认True,升序
参数na_position:指定NaN值位置,默认last
  1. df2.sort_values(by='age')  # 按 age 升序排列
复制代码
721575df89d0796629.png
  1. df2.sort_values(by='age',ascending=False,na_position='first')
复制代码
873045df89d25872cb.png
9、对DataFrame数据切片
  1. df2[1:3]
复制代码
928655df89d7724314.png
10、对DataFrame通过标签查询
单列
df2['age'] 等价于 df2.age   
  1. df2['age']
复制代码
951195df89e223d969.png
多列
  1. df2[['age', 'animal']]  # 传入一个列名组成的列表
复制代码
619715df89e8e45073.png
11、对DataFrame通过位置查询
  1. df2.iloc[1:3]  # 查询 2,3 行
复制代码
7905df89ed69f90d.png
12、对DataFrame拷贝
  1. df3 = df2.copy()# 生成 DataFrame 副本
  2. df3
复制代码
462995df89f20821ab.png
13、判断DataFrame元素是否为空
  1. df3.isnull()  # 如果为空则返回为 True
复制代码
116215df89f6c98eca.png
14、添加列数据
  1. num = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], index=df3.index)

  2. df3['Num'] = num  # 添加以 'Num' 为列名的新数据列
  3. df3
复制代码
892645df8a2e96d1ce.png
14、更改DataFrame对应的下标值
  1. # 修改第 2 行与第 2 列对应的值 3.0 → 2.0
  2. df3.iat[1, 1] = 2  # 索引序号从 0 开始,这里为 1, 1
  3. df3
复制代码
615355df8a36d6761f.png
15、根据索引列名更改DataFrame对应的值
  1. df3.loc['f', 'age'] = 1.5
  2. df3
复制代码
603265df8a41c324ed.png
发表于 2019-12-20 11:34:50
df2[['age', 'animal']]  # 传入一个列名组成的列表
应该会有警告了,提倡: df2.loc[:,["age","animal"]]
回复

使用道具 举报

发表于 2019-12-23 15:10:00
向南 发表于 2019-12-20 11:34
df2[['age', 'animal']]  # 传入一个列名组成的列表
应该会有警告了,提倡: df2.loc[:,["age","animal"] ...

可以的,很细节
回复

使用道具 举报

高级模式
B Color Image Link Quote Code Smilies
您需要登录后才可以回帖 登录 | 立即注册

2回帖数 0关注人数 7297浏览人数
最后回复于:2019-12-23 15:10
快速回复 返回顶部 返回列表