十二月初新内容速递丨技术精进、实战赋能与开发深化

寒冬未至,学习不止!十二月上旬更新带来技术精进、实战赋能、场景课程与开发深化,助你在数据智能的道路上持续进阶!

一、场景化课程上线

驱动增长:汽车制造营销分析主题课程→聚焦汽车行业营销场景,学习如何利用数据驱动业务增长。

价值引擎:汽车制造财务分析主题课程→深入财务数据分析,助力企业价值挖掘与决策支持。

二、场景应用上线

【爆】券业“卷王”诞生!他竟与AI助手海誓山盟》→看券商如何玩转AI助手,提升服务智能化水平。

【词云图】三分钟,让你成为“文字淘金高手”》→快速上手词云图,轻松提取文本关键信息。

三、技术经验分享

版本更新/升级不用愁!这份方案大全请拿好》→系统升级不再迷茫,一站式解决方案助你顺利过渡。

告别“系统用不了”的无效沟通,Smartbi运维急救包请收好》→高效运维指南,帮你快速定位并解决系统使用中的常见问题。

四、二次开发视频

扩展包开发知识点——自定义module以及接口调用》→深入学习扩展包开发,掌握自定义模块与接口调用的核心技术

五、任务持续上线

场景实战系列:数据更新&校验,赢取278麦豆!》→掌握数据更新与校验核心技能,完成任务即获奖励。

场景实战系列:数据模型,赢取278麦豆!》→深入数据建模实战,提升数据架构能力。

200麦豆等你拿!词云在手,焦点立现》→轻松掌握词云图制作,视觉化呈现文本数据。

六、全新素材上线

防止数据过载:可配置的导入行数次数上限→ 灵活控制数据导入,保障系统稳定运行。

三权分立控制用户权限→ 细化权限管理,提升系统安全性与管理效率。


麦粉社区
>
帖子详情

python学习篇-pandas库(九)

数据挖掘 发表于 2019-12-25 16:32
发表于 2019-12-25 16:32:45
插值法填补缺失值
函数DataFrame.interpolate()
参数method:默认linear
  • ‘linear’:忽略索引并将值视为等间距
  • index’, ‘values’:使用索引的实际数值
  • ‘pad’:用现有的数据填写NaN
  • ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘spline’, ‘barycentric’, ‘polynomial’:
      'polynomial'和'spline'都要求指定一个order(int)

参数limit:int,要填充的NaN值的最大个数,必须大于0
参数limit_direction:{‘forward’, ‘backward’, ‘both’}, default ‘forward’,如果指定了limit,则按此方向填充连续的NaN
1、Series通过linear方法填充NaN
  1. s = pd.Series([0, 2, np.nan, np.nan,8])
  2. print(s)
  3. s.interpolate(method='linear')
复制代码
524055e031678965a3.png
2、根据现有数据填充NaN
  1. s = pd.Series([0, 2, np.nan, np.nan,8,np.nan])
  2. print(s)
  3. s.interpolate(method='pad',limit=1)
复制代码
718705e03173cb49de.png
3、使用多项式方法填充
  1. s = pd.Series([0, 2, np.nan, np.nan,8,np.nan])
  2. print(s)
  3. s.interpolate(method='polynomial',order=2)
复制代码
506765e031b8ff322c.png
4、指点方向填充数值
  1. df = pd.DataFrame([(0.0, np.nan, -1.0, 1.0),
  2. ...                    (np.nan, 2.0, np.nan, np.nan),
  3. ...                    (2.0, 3.0, np.nan, 9.0),
  4. ...                    (np.nan, 4.0, -4.0, 16.0)],
  5. ...                   columns=list('abcd'))
  6. print(df)
  7. df.interpolate(methmod='linear',limit_direction='backward',axis=0)
复制代码
321795e031d7118fea.png
5、对某一列作填充数值操作
  1. print(df['d'])
  2. df['d'].interpolate(method='polynomial',order=2)
复制代码
349635e031e7788e76.png
高级模式
B Color Image Link Quote Code Smilies
您需要登录后才可以回帖 登录 | 立即注册

0回帖数 0关注人数 6577浏览人数
最后回复于:2019-12-25 16:32
快速回复 返回顶部 返回列表