十月上旬更新速递丨 AI深入、实战强化与开发进阶

秋意渐浓,智能不息!十月上旬更新聚焦AI知识深化、任务实战、开发进阶与体验优化,助力你在数据与AI的海洋中乘风破浪!

一、产品更新

DEMO动态】体验中心金秋上新!行业案例DEMO上架!》→ 全新行业案例DEMO上线,覆盖多业务场景,助你快速理解智能分析落地实践!

二、技术经验分享

回写填报数据异常?让你告别“白干了”的崩溃!→ 从现象到根源,一步步教你排查并解决回写填报中的常见问题。

三、二次开发视频

扩展包环境搭建→“工欲善其事必先利其器”,讲解如何搭建扩展包的开发环境、创建扩展包、打包上线等内容。

、任务持续上线

AI每日一学知识巩固】简单总结一下AI Agent的五个发展阶段》→梳理AI Agent演进脉络,巩固学习成果。

AI每日一学知识巩固】简述AI Agent核心特征有哪些?》→检验对智能体核心能力的理解。

BI知识闯关】回写填报数据异常?让你告别“白干了”的崩溃》→实战排查数据回写问题,提升故障处理能力

场景实战系列:dwd层数据处理,赢取278麦豆!》→深入数据仓库底层处理,提升数据建模能力,完成任务即可赢取奖励!

五、AI每日一学

AI每日一学】简述AI Agent核心特征有哪些?》→ 掌握智能体的核心属性,理解其运作逻辑。

AI每日一学】Agentic AI的定义、定位、目标和关键特征是什么?》→ 深入解读Agentic AI,构建系统化AI认知体系。

为进一步提升认证服务的质量与体验,我们对认证业务进行全面优化升级。更多详情请看Smartbi认证考试优化升级公告

麦粉社区
>
帖子详情

python学习篇-pandas库(九)

数据挖掘 发表于 2019-12-25 16:32
发表于 2019-12-25 16:32:45
插值法填补缺失值
函数DataFrame.interpolate()
参数method:默认linear
  • ‘linear’:忽略索引并将值视为等间距
  • index’, ‘values’:使用索引的实际数值
  • ‘pad’:用现有的数据填写NaN
  • ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘spline’, ‘barycentric’, ‘polynomial’:
      'polynomial'和'spline'都要求指定一个order(int)

参数limit:int,要填充的NaN值的最大个数,必须大于0
参数limit_direction:{‘forward’, ‘backward’, ‘both’}, default ‘forward’,如果指定了limit,则按此方向填充连续的NaN
1、Series通过linear方法填充NaN
  1. s = pd.Series([0, 2, np.nan, np.nan,8])
  2. print(s)
  3. s.interpolate(method='linear')
复制代码
524055e031678965a3.png
2、根据现有数据填充NaN
  1. s = pd.Series([0, 2, np.nan, np.nan,8,np.nan])
  2. print(s)
  3. s.interpolate(method='pad',limit=1)
复制代码
718705e03173cb49de.png
3、使用多项式方法填充
  1. s = pd.Series([0, 2, np.nan, np.nan,8,np.nan])
  2. print(s)
  3. s.interpolate(method='polynomial',order=2)
复制代码
506765e031b8ff322c.png
4、指点方向填充数值
  1. df = pd.DataFrame([(0.0, np.nan, -1.0, 1.0),
  2. ...                    (np.nan, 2.0, np.nan, np.nan),
  3. ...                    (2.0, 3.0, np.nan, 9.0),
  4. ...                    (np.nan, 4.0, -4.0, 16.0)],
  5. ...                   columns=list('abcd'))
  6. print(df)
  7. df.interpolate(methmod='linear',limit_direction='backward',axis=0)
复制代码
321795e031d7118fea.png
5、对某一列作填充数值操作
  1. print(df['d'])
  2. df['d'].interpolate(method='polynomial',order=2)
复制代码
349635e031e7788e76.png
高级模式
B Color Image Link Quote Code Smilies
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

0回帖数 0关注人数 6399浏览人数
最后回复于:2019-12-25 16:32
快速回复 返回顶部 返回列表