九月上旬更新速递丨 AI赋能、技术实战与智能探索

AI浪潮席卷,九月更新携智能发布会、实战经验与开发进阶强势登场!助您紧跟技术前沿,玩转数据智能!

重点推荐AI发布会火热预热!Agent BI是什么?Smartbi AIChat 全新升级发布会为您揭晓!

现有预热活动【智能体降临,未来已来!】解锁Smartbi AIChat V4超能力,参与即有机会赢专属好礼,抢先体验AI新纪元!更推出全新《十分钟完整体验AIchat》课程视频,仅需10分钟,即可使用本地数据快速体验AIChat全部功能,轻松入门智能分析!

一、任务持续上线

特征工程和数据预处理有什么区别?强化记忆,巩固学习成果。
SmartBI玩转Top N分析,轻松揪出数据》→检验分析能力,突破业务洞察瓶颈。

二、实战技巧分享

SmartBI同比环比分析大揭秘:让数据“笑”出真相!》→让数据不再沉闷,让趋势跃然纸上!

SmartBI玩转Top N分析,轻松揪出数据"尖子生"!》→面对海量数据,如何高效地提取最有价值的信息,快速识别关键数据项

、开发技能突破

扩展包简介→通过了解扩展包的实现原理和作用,让我们对扩展包有大致的认知。

四、AI每日一学

LLM 中的 Token 和 Embedding 到底是啥?》→深入浅出解析自然语言处理中的基础概念,夯实AI理解基石。

特征工程和数据预处理有什么区别?→厘清特征处理与数据清洗的边界,为模型训练铺平道路。

注意力机制、自注意力机制、多头注意力揭秘Transformer核心机制,助力理解现代AI模型架构。


为进一步提升认证服务的质量与体验,我们对认证业务进行全面优化升级。更多详情请看→Smartbi认证考试优化升级公告



麦粉社区
>
帖子详情

python学习篇-pandas库(一)

数据挖掘 发表于 2019-12-10 11:46
发表于 2019-12-10 11:46:21
本帖最后由 chenshuo 于 2019-12-10 14:07 编辑

Pandas 的数据结构:Pandas 主要有 Series(一维数组),DataFrame(二维数组),Panel(三维数组),Panel4D(四维数组),PanelND(更多维数组)等数据结构。其中 Series 和 DataFrame 应用的最为广泛

  • Series 是一维带标签的数组,它可以包含任何数据类型。包括整数,字符串,浮点数,Python 对象等。Series 可以通过标签来定位。
  • DataFrame 是二维的带标签的数据结构。我们可以通过标签来定位数据。这是 NumPy 所没有的。
创建Series数据类型
Series可以被看做由一列数据组成的数据集
创建Series语法:s = pd.Series(data,index=index)
下面介绍通过三种方式创建:
1、从列表创建Series
  1. arr = [0, 1, 2, 3, 4]
  2. s1 = pd.Series(arr)  # 如果不指定索引,则默认从 0 开始
  3. s1
复制代码

复制代码
829355def135bcebe9.png
提示:前面的 0, 1, 2, 3, 4 为当前 Series 的索引,后面的 0, 1, 2, 3, 4 为 Series 的值。
2、从Ndarray创建Series
  1. import numpy as np

  2. n = np.random.randn(5)  # 创建一个随机 Ndarray 数组
  3. index = ['a', 'b', 'c', 'd', 'e']
  4. s2 = pd.Series(n, index=index)
  5. s2
复制代码
870275def1410e9480.png
3、从字典中创建Series
  1. d = {'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5}  # 定义示例字典
  2. s3 = pd.Series(d)
  3. s3
复制代码
820495def1471af8ab.png


高级模式
B Color Image Link Quote Code Smilies
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

0回帖数 0关注人数 5526浏览人数
最后回复于:2019-12-10 11:46
快速回复 返回顶部 返回列表