十二月初新内容速递丨技术精进、实战赋能与开发深化

寒冬未至,学习不止!十二月上旬更新带来技术精进、实战赋能、场景课程与开发深化,助你在数据智能的道路上持续进阶!

一、场景化课程上线

驱动增长:汽车制造营销分析主题课程→聚焦汽车行业营销场景,学习如何利用数据驱动业务增长。

价值引擎:汽车制造财务分析主题课程→深入财务数据分析,助力企业价值挖掘与决策支持。

二、场景应用上线

【爆】券业“卷王”诞生!他竟与AI助手海誓山盟》→看券商如何玩转AI助手,提升服务智能化水平。

【词云图】三分钟,让你成为“文字淘金高手”》→快速上手词云图,轻松提取文本关键信息。

三、技术经验分享

版本更新/升级不用愁!这份方案大全请拿好》→系统升级不再迷茫,一站式解决方案助你顺利过渡。

告别“系统用不了”的无效沟通,Smartbi运维急救包请收好》→高效运维指南,帮你快速定位并解决系统使用中的常见问题。

四、二次开发视频

扩展包开发知识点——自定义module以及接口调用》→深入学习扩展包开发,掌握自定义模块与接口调用的核心技术

五、任务持续上线

场景实战系列:数据更新&校验,赢取278麦豆!》→掌握数据更新与校验核心技能,完成任务即获奖励。

场景实战系列:数据模型,赢取278麦豆!》→深入数据建模实战,提升数据架构能力。

200麦豆等你拿!词云在手,焦点立现》→轻松掌握词云图制作,视觉化呈现文本数据。

六、全新素材上线

防止数据过载:可配置的导入行数次数上限→ 灵活控制数据导入,保障系统稳定运行。

三权分立控制用户权限→ 细化权限管理,提升系统安全性与管理效率。


麦粉社区
>
帖子详情

python学习篇-pandas库(一)

数据挖掘 发表于 2019-12-10 11:46
发表于 2019-12-10 11:46:21
本帖最后由 chenshuo 于 2019-12-10 14:07 编辑

Pandas 的数据结构:Pandas 主要有 Series(一维数组),DataFrame(二维数组),Panel(三维数组),Panel4D(四维数组),PanelND(更多维数组)等数据结构。其中 Series 和 DataFrame 应用的最为广泛

  • Series 是一维带标签的数组,它可以包含任何数据类型。包括整数,字符串,浮点数,Python 对象等。Series 可以通过标签来定位。
  • DataFrame 是二维的带标签的数据结构。我们可以通过标签来定位数据。这是 NumPy 所没有的。
创建Series数据类型
Series可以被看做由一列数据组成的数据集
创建Series语法:s = pd.Series(data,index=index)
下面介绍通过三种方式创建:
1、从列表创建Series
  1. arr = [0, 1, 2, 3, 4]
  2. s1 = pd.Series(arr)  # 如果不指定索引,则默认从 0 开始
  3. s1
复制代码

复制代码
829355def135bcebe9.png
提示:前面的 0, 1, 2, 3, 4 为当前 Series 的索引,后面的 0, 1, 2, 3, 4 为 Series 的值。
2、从Ndarray创建Series
  1. import numpy as np

  2. n = np.random.randn(5)  # 创建一个随机 Ndarray 数组
  3. index = ['a', 'b', 'c', 'd', 'e']
  4. s2 = pd.Series(n, index=index)
  5. s2
复制代码
870275def1410e9480.png
3、从字典中创建Series
  1. d = {'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5}  # 定义示例字典
  2. s3 = pd.Series(d)
  3. s3
复制代码
820495def1471af8ab.png


高级模式
B Color Image Link Quote Code Smilies
您需要登录后才可以回帖 登录 | 立即注册

0回帖数 0关注人数 5748浏览人数
最后回复于:2019-12-10 11:46
快速回复 返回顶部 返回列表