九月上旬更新速递丨 AI赋能、技术实战与智能探索

AI浪潮席卷,九月更新携智能发布会、实战经验与开发进阶强势登场!助您紧跟技术前沿,玩转数据智能!

重点推荐AI发布会火热预热!Agent BI是什么?Smartbi AIChat 全新升级发布会为您揭晓!

现有预热活动【智能体降临,未来已来!】解锁Smartbi AIChat V4超能力,参与即有机会赢专属好礼,抢先体验AI新纪元!更推出全新《十分钟完整体验AIchat》课程视频,仅需10分钟,即可使用本地数据快速体验AIChat全部功能,轻松入门智能分析!

一、任务持续上线

特征工程和数据预处理有什么区别?强化记忆,巩固学习成果。
SmartBI玩转Top N分析,轻松揪出数据》→检验分析能力,突破业务洞察瓶颈。

二、实战技巧分享

SmartBI同比环比分析大揭秘:让数据“笑”出真相!》→让数据不再沉闷,让趋势跃然纸上!

SmartBI玩转Top N分析,轻松揪出数据"尖子生"!》→面对海量数据,如何高效地提取最有价值的信息,快速识别关键数据项

、开发技能突破

扩展包简介→通过了解扩展包的实现原理和作用,让我们对扩展包有大致的认知。

四、AI每日一学

LLM 中的 Token 和 Embedding 到底是啥?》→深入浅出解析自然语言处理中的基础概念,夯实AI理解基石。

特征工程和数据预处理有什么区别?→厘清特征处理与数据清洗的边界,为模型训练铺平道路。

注意力机制、自注意力机制、多头注意力揭秘Transformer核心机制,助力理解现代AI模型架构。


为进一步提升认证服务的质量与体验,我们对认证业务进行全面优化升级。更多详情请看→Smartbi认证考试优化升级公告



麦粉社区
>
帖子详情

【AI每日一学】简单总结一下AI Agent的五个发展阶段

AIChat 发表于 前天 11:49

麦粉集合!AI实战落地系列第二十七弹扬帆起航!


        在上一弹中,我们深入探讨了Python为何能成为人工智能领域的首选编程语言,理解了其简单易学、生态丰富、跨平台兼容、社区活跃和交互性好五大优势。这些特性使得Python成为实现注意力机制、Transformer架构乃至各类AI模型的高效工具。


        掌握了Python这一强大的“AI开发利器”之后,我们很自然地会思考:如何利用它来构建更智能、更自主的AI系统?这就引出了今天我们要探讨的主题——AI Agent的五个发展阶段。从简单的指令响应到复杂的多智能体协作,AI Agent正逐步向着更拟人、更通用的方向演进。


AI知识问答(知识巩固)


         在深入学习之前,让我们先通过几道题目巩固第二十六弹的Python相关知识。温故而知新,这将为我们理解AI Agent的实现基础奠定更好的基础,拼手速的时候到啦——>【AI每日一学知识巩固】为什么Python 是目前人工智能领域最常用的编程语言


 


         理解了Python如何降低AI开发门槛、提升效率之后,接下来就让我们正式进入今天的学习主题——AI Agent的五个发展阶段。从基础工具到完整系统,我们将一步步揭开AI智能体演进的全貌。


简单总结一下AI Agent的五个发展阶段


AI Agent的发展呈现“从简单开始,逐步增加复杂性”的特性。


01基础工具与指令阶段

最简单的AI Agent,使用LLM结合工具和指令完成任务。



  • 特点:是最简单的AI Agent,依靠LLM 搭配工具、指令开展工作。

  • 功能:借指令“教”Agent完成任务,运用工具(如搜索工具)与外部环境交互。

  • 例子:可指导开发者构建Agent的Agent。

  • 要点:适配初级任务,不过能力存在局限。


02知识库与存储阶段

为Agent加入知识库和存储功能,使其能搜索外部信息并保存状态。



  • 知识库:运用混合搜索(全文+语义搜索)+重排序(reranking),提升信息检索精准度。

  • 存储:留存会话状态(像ChatGPT的聊天记录),助力 Agent在不同会话间维持“记忆”

  • 例子:Agent可从SQLite数据库读取知识,解答更复杂问题。

  • 要点:解决LLM无状态难题,增强任务连续性。


03记忆与推理阶段

Agent具备记忆(记住用户信息)和推理能力,能更聪明地解决问题。



  • 记忆:跨会话记住用户细节,实现个性化,比如记住用户偏好。

  • 推理:借助推理工具(如 PythonTools),提升多步骤任务成功率(从60%往更高推进)。

  • 例子:Agent在多次对话后记住用户需求,给出更贴合的回答。

  • 要点:推理虽能优化复杂任务表现,却会增添成本与延迟。


04多Agent团队阶段

多个Agent组成团队,分工合作攻克复杂问题。



  • 挑战:每个Agent需专注单一领域(工具少于10个),团队协作依赖推理支持,否则成功率低(当前成功率<50%),

  • 例子:一个团队Agent分析股票数据,另一个给出建议。

  • 要点:2025年多Agent系统尚不成熟,适合研究,暂难用于生产。


05 Agent系统

构建完整的Agent系统,通过API异步处理任务并返回结果。



  • 实现:需数据库保存状态、异步任务处理(如 FastAPI后台任务)及结果流式传输。

  • 挑战:技术复杂(如运用WebSocket),却是未来趋势,也是商业化重点。

  • 例子:带有Agent API和UI框架,具备用户交互能力的Agent系统。

  • 要点:难度最高但潜力最大,适配大规模应用。


本次的学习就到这里结束了,理论需要实践验证,技术渴望真实触感!我们为您准备了:


AIChat体验环境!


在这里,你可以尽情体验Smartbi 白泽 AIChat产品的强大功能,感受智能交互带来的便捷与乐趣。


 


体验中心入口:


AIChat体验环境(点击即可开启奇妙之旅)


 


帮助中心入口:


AIChat帮助中心遇到问题随时查阅)


 


相关学习视频:



欢迎大家前来体验~

发表于 前天 16:03
学到了
回复

使用道具 举报

高级模式
B Color Image Link Quote Code Smilies
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

1回帖数 0关注人数 112浏览人数
最后回复于:前天 16:03
快速回复 返回顶部 返回列表