月下旬更新速递丨 实战场景深化、集成能力升级与开发进阶

初冬来临,一波热气腾腾的更新也准时抵达!我们聚焦实战技巧、集成增强与开发进阶,一系列新功能与新教程,助你在数据分析与系统开发的效率上再进一步。

一、实战技巧精讲

雷达图:多维度数据的“透视镜”,3步读懂数据真相》→ 聚焦雷达图核心应用场景,快速掌握多对象、多维度数据的可视化分析方法。

用图表解锁你的生活“数据密码”!》→ 探索图表在日常场景中的应用,让数据解读更直观、更具操作性。

二、直播上线

2025新特性实战解读(上)数据分析效率倍增秘籍》→ 解析2025新特性落地路径,助力实现数据分析效率成倍提升。

三、技术经验分享

【专家分享】数据排序的“权力游戏”:优先级规则决定谁先谁后》→解读高级排序的业务配置逻辑,让关键数据始终处于优先展示位置。

四、二次开发视频

扩展包开发知识点——前端改造》→从需求分析入手到最终实现的全流程讲解,帮助您快速入门上手Smartbi前端改造。

五、任务持续上线

【初级任务】解锁生活“数据密码”,可视化创意实践任务》→发起可视化创意任务,推动数据表达更生动、更具趣味性。

【初级任务】玩转雷达图解数据,200麦豆等你拿!》→推出雷达图实战任务,以激励方式提升多维数据分析技能。

六、全新素材上线

AD域(LDAP/LDAPS)登录验证V2》→扩展域账号登录支持,实现与企业Windows认证体系无缝对接。

数据模型:对接RestfulAPI接口》→打通数据模型与RestfulAPI对接通道,提升系统集成与数据获取效率。

计划任务:定时清空用户属性缓存→引入缓存自动清理机制,确保权限变更实时生效、业务数据及时更新。

用户同步:BI系统自定义用户所属组》→优化用户组同步逻辑,实现自定义组信息自动识别与补全。

审核流程:可以调用自助ETL》→增强审核流程集成能力,支持在用户任务节点直接调用自助ETL过程。

麦粉社区
>
帖子详情

【AI每日一学】LLM 中的 Token 和 Embedding 到底是啥?

AIChat 发表于 2025-9-1 11:20
发表于 2025-9-1 11:20:32

麦粉集合!AI实战落地系列第二十三弹扬帆起航!


        在上一弹中,我们深入探讨了AI对话中的关键工具—prompt(提示词),掌握了如何通过精准的指令引导AI生成高质量内容,真正实现“人机协同”。Prompt不仅是沟通的桥梁,更是释放AI潜能的钥匙。学会了它,你就掌握了与AI高效对话的“魔法”!


        而今天,我们将回归技术底层,解析LLM(大语言模型)中两个最基础却又至关重要的概念——Token与Embedding。它们就像是AI理解语言的“字母”和“词典”,搞懂它们,你才能真正明白AI是如何“读懂”人类语言的!


AI知识问答(知识巩固)


        在深入新领域之前,先来一场有趣的“知识热身赛”吧!温故而知新,这可是进步的秘诀哦~ 快来检验一下你对Prompt的理解程度吧!规则依旧,最快答对的前十名麦粉将赢得20麦豆!这可是拼手速和知识储备的绝佳时刻,你准备好了吗?——>【AI每日一学知识巩固】在AI语境里,介绍一下Prompt


 


掌握了Prompt的设计精髓后,我们将进一步揭开AI理解语言的神秘面纱——Token与Embedding,它们是LLM处理文本的基石。你准备好了吗?让我们继续探索!


LLM中的Token和Embedding到底是啥?(今日学习)


在LLM(大语言模型)中,Token和Embedding是两个基础且关键的概念,解释如下:


Token


        Token可以理解为将文本分割成的一个个“小单元”。比如句子“我爱自然语言处理”,可能被分割成“我”“爱”“自然”“语言”“处理”等Token。模型处理文本时,需先将其转化为Token序列,这是因为计算机只能处理数字,而Token化就是将文本转换为模型能理解的数字序列的第一步。不同模型的Token分割方式可能不同,有的按单词分割,有的按子词分割,还有的按字符分割。


 


Embedding


        Embedding是将Token转化为向量的过程。每个Token经过Embed ding后,会变成一个稠密的数值向量(如长度为768的向量)。这些向量不是随机生成的,而是包含了Token的语义信息,比如意思相近的Token,它们的Embedding向量在空间中的距离会比较近。Embedding就像是给Token赋予了“数字身份”,让模型能通过向量运算来理解文本的语义和关系。


 


关键区别:



  • Token是“形式”,Embedding是“内涵”。

  • Token解决“怎么让AI认识文字”,把中文拆成数字ID,像给每个字/词发一个“身份证号”;Embedding解决“怎么让AI懂意思”,用数字向量记录语义特征,像给每个ID写上“性格特点”,让AI能根据“标签”判断谁和谁更像。


         Token就像把中文书撕成小纸片(每个纸片是一个字或词),Embedding就是在每个纸片上写备注(比如“这是水果类的词”)。AI拿着这些带备注的纸片,就能知道哪些纸片讲的是同类东西。简单来说,Token是对文本的分割,让模型能处理文本;Embedding是给Token赋予语义信息,让模型能理解文本的含义。两者共同构成了LLM处理自然语言的基础。


 


本次的学习就到这里结束了,理论需要实践验证,技术渴望真实触感!我们为您准备了:


AIChat体验环境!


在这里,你可以尽情体验Smartbi 白泽 AIChat产品的强大功能,感受智能交互带来的便捷与乐趣。


体验中心入口:


AIChat体验环境(点击即可开启奇妙之旅)


帮助中心入口:


AIChat帮助中心遇到问题随时查阅)


相关学习视频:



欢迎大家前来体验~


 

发表于 2025-9-2 14:11:31
学习了
回复

使用道具 举报

发表于 2025-9-2 19:16:04
学习了
回复

使用道具 举报

发表于 2025-9-3 09:08:56
学习了。
回复

使用道具 举报

发表于 2025-9-4 08:54:55
学习了

回复

使用道具 举报

发表于 2025-9-4 12:12:41
学习了
回复

使用道具 举报

发表于 2025-9-8 13:34:03
学习了。
回复

使用道具 举报

发表于 2025-9-26 09:32:47
学到了
回复

使用道具 举报

高级模式
B Color Image Link Quote Code Smilies
您需要登录后才可以回帖 登录 | 立即注册

11回帖数 0关注人数 1373浏览人数
最后回复于:2025-9-26 09:32
快速回复 返回顶部 返回列表