月下旬更新速递丨 实战场景深化、集成能力升级与开发进阶

初冬来临,一波热气腾腾的更新也准时抵达!我们聚焦实战技巧、集成增强与开发进阶,一系列新功能与新教程,助你在数据分析与系统开发的效率上再进一步。

一、实战技巧精讲

雷达图:多维度数据的“透视镜”,3步读懂数据真相》→ 聚焦雷达图核心应用场景,快速掌握多对象、多维度数据的可视化分析方法。

用图表解锁你的生活“数据密码”!》→ 探索图表在日常场景中的应用,让数据解读更直观、更具操作性。

二、直播上线

2025新特性实战解读(上)数据分析效率倍增秘籍》→ 解析2025新特性落地路径,助力实现数据分析效率成倍提升。

三、技术经验分享

【专家分享】数据排序的“权力游戏”:优先级规则决定谁先谁后》→解读高级排序的业务配置逻辑,让关键数据始终处于优先展示位置。

四、二次开发视频

扩展包开发知识点——前端改造》→从需求分析入手到最终实现的全流程讲解,帮助您快速入门上手Smartbi前端改造。

五、任务持续上线

【初级任务】解锁生活“数据密码”,可视化创意实践任务》→发起可视化创意任务,推动数据表达更生动、更具趣味性。

【初级任务】玩转雷达图解数据,200麦豆等你拿!》→推出雷达图实战任务,以激励方式提升多维数据分析技能。

六、全新素材上线

AD域(LDAP/LDAPS)登录验证V2》→扩展域账号登录支持,实现与企业Windows认证体系无缝对接。

数据模型:对接RestfulAPI接口》→打通数据模型与RestfulAPI对接通道,提升系统集成与数据获取效率。

计划任务:定时清空用户属性缓存→引入缓存自动清理机制,确保权限变更实时生效、业务数据及时更新。

用户同步:BI系统自定义用户所属组》→优化用户组同步逻辑,实现自定义组信息自动识别与补全。

审核流程:可以调用自助ETL》→增强审核流程集成能力,支持在用户任务节点直接调用自助ETL过程。

麦粉社区
>
帖子详情

【AI每日一学】什么是训练集?什么是验证集?什么是测试集?

AIChat 发表于 2025-7-21 11:02
发表于 2025-7-21 11:02:01

麦粉集合!AI实战落地系列第十七弹极速启航!


         上回我们深入剖析了机器学习的四大"驾驶模式"——监督、无监督、半监督与自监督学习,就像掌握了不同路况的通行法则。而今天要揭秘的是"训练赛道"的黄金分割术——当模型踏上学习之旅,如何科学划分数据资源才能跑出最佳成绩?答案就在训练集、验证集与测试集的战略分工中!


         按照老规矩,先来一场知识巩固小测试,还有小福利哦:一周内答对的前三名的麦粉,奖励20麦豆!答案藏在上期神帖【简单总结一下机器学习中的几种常见的学习方式与区别】中~


AI知识问答(知识巩固)


1、监督学习的核心痛点是什么?


A. 模型结构复杂


B. 需大量人工标记数据


C. 无法发现数据隐藏规律


D. 仅支持分类任务


2、无监督学习最适合处理哪类任务?


A. 房价预测


B. 客户群体聚类


C. 图像分类


D. 股票涨跌预测


3、自监督学习如何减少对标注数据的依赖?


A. 通过数据自身生成监督信号


B. 融合半监督学习框架


C. 增加模型参数量


D. 采用强化学习机制


       


         通过这场测试,相信大家对"学习方式"的战略选择已了然于心!现在,我们直击模型训练的核心战场——如何用三大数据集为AI打造"训练-调试-终测"的全流程闭环?今日干货再度拉满,系好安全带,出发!


什么是训练集?什么是验证集?什么是测试集?(今日学习)


在机器学习和深度学习中,训练集、验证集和测试集是用于模型训练、评估和调优的不同数据集,以下是它们的具体介绍:


训练集


-定义:


是用于训练机器学习模型的数据集,包含了大量的输入特征和对应的目标输出,模型通过学习训练集中的数据来调整自身的参数,以尽可能准确地预测目标输出。


 


-作用:


让模型学习数据中的模式和规律,例如在一个预测房价的模型中,训练集包含了房屋的各种特征(面积、房间数等)以及对应的实际房价,模型通过对训练集的学习,建立起房屋特征与房价之间的关系。


 


验证集


-定义:


在模型训练过程中,用于评估模型性能和调整超参数的数据集。它不参与模型的训练过程,而是在训练过程中定期用来验证模型的泛化能力。


 


-作用:


帮助选择最优的模型超参数,防止模型过拟合。例如,在选择神经网络的层数、学习率等超参数时,可以通过观察模型在验证集上的性能表现来确定最佳的取值。


 


测试集


-定义:


在模型训练和调优完成后,用于最终评估模型性能的数据集。它是模型在训练过程中从未见过的数据,能够真实地反映模型在实际应用中的泛化能力。


 


-作用:


提供一个客观的评估指标,如准确率、召回率、均方误差等,来衡量模型的优劣。例如,一个图像分类模型在测试集上的准确率为90%,就表示该模型在对新的、未见过的图像进行分类时,预计有90%的图像能够被正确分类。


 


注解说明


超参数



  • 定义:模型训练前设定的参数,如学习率、网络层数,影响模型学习效果和速度。

  • 作用:超参数是机器学习模型中的“控制旋钮”,它们通过调整模型的复杂度、训练过程和泛化能力,直接影响模型的性能和效率。


过拟合



  • 定义:指的是模型在训练集表现好,但在新数据上差,即过度适应训练数据,泛化能力弱。过拟合通常是由于模型过于复杂或者训练数据量过少导致的。


 


特大消息!AIChat体验环境正式上线!


在这里,你可以尽情体验Smartbi 白泽 AIChat产品的强大功能,感受智能交互带来的便捷与乐趣。


体验中心入口:


AIChat体验环境(点击即可开启奇妙之旅)


帮助中心入口:


AIChat帮助中心遇到问题随时查阅)


相关学习视频:



欢迎大家前来体验~


 

发表于 2025-7-22 08:37:07
B,B,A
打赏人数1麦豆 +20 收起 理由
Smartbi社区管理员 + 20

查看全部打赏


回复

使用道具 1 举报

发表于 2025-7-22 08:55:27

賺點積分

回复

使用道具 举报

发表于 2025-7-22 13:55:17
B、B、A
打赏人数1麦豆 +20 收起 理由
Smartbi社区管理员 + 20

查看全部打赏


回复

使用道具 1 举报

发表于 2025-7-22 13:57:15
答案是 BBA
打赏人数1麦豆 +20 收起 理由
Smartbi社区管理员 + 20

查看全部打赏


回复

使用道具 举报

发表于 2025-7-28 09:00:06

BBA


回复

使用道具 举报

发表于 2025-8-2 15:05:02
答案是
BBA
回复

使用道具 举报

高级模式
B Color Image Link Quote Code Smilies
您需要登录后才可以回帖 登录 | 立即注册

10回帖数 0关注人数 1484浏览人数
最后回复于:2025-8-2 15:05
快速回复 返回顶部 返回列表