七月上旬更新速递丨 聚焦集成、安全与AI深度进化

更新亮点: 本次重点强化系统集成能力与AI认知升级,新增4大核心模块9项资源,优化4项资源,点击标题了解(持续互动赢麦豆,解锁高阶技能)

重点推荐:《场景化数据分析实战》课程操作手册

配套六月王炸课程的全套落地指南,手把手教你复现实战场景!

二、实战技巧分享

高效处理资源集成难题》→ 从基础出发,深入探究集成的秘密

三、开发技能突破

第三方系统调用Smartbi接口》→讲解系统集成时的jar包获取,以及集成时代码调用的基本流程。

集成接口介绍》→梳理Smartbi目前提供的接口,以及不同接口的调用流程。

AI每日一学

DeepSeek-R1-0528模型升级:推理与生态的双重升级》→ 解析模型性能提升40%的关键技术 (技术前沿)

简单总结一下机器学习中的几种常见的学习方式与区别》→ 监督/无监督/强化学习差异与应用场景图解 (基础重构)

五、资源更新

CAS单点登录 V2版》上线→ 接入到 CAS 平台中,并实现单点登录

组织/用户/角色信息管理API接口》上线→ 一套 HTTP API的组织、用户、角色信息管理接口

竹云统一身份认证平台组织用户同步对接》上线→ Smartbi封装对应的服务接口,给竹云的统一身份认证平台实时调用,完成组织、用户和角色信息的实时同步。

交互式仪表盘支持自定义字体》优化→ 修复了文本组件编辑状态不生效的问题

只允许外网某种移动端APP访问》优化→ 针对V11版本,增加了钉钉、企业微信访问限制功能

AD域(LDAP/LDAPS)登录验证》优化→ 修复了“更新白名单状态之前没有判断判断用户是否存”的问题

元数据分析落地到知识库》优化→ 增加获取资源创建者的逻辑判断,对空值空对象等情况做优化

麦粉社区
>
帖子详情

【AI每日一学】什么是训练集?什么是验证集?什么是测试集?

AIChat 发表于 昨天 11:02

麦粉集合!AI实战落地系列第十七弹极速启航!


         上回我们深入剖析了机器学习的四大"驾驶模式"——监督、无监督、半监督与自监督学习,就像掌握了不同路况的通行法则。而今天要揭秘的是"训练赛道"的黄金分割术——当模型踏上学习之旅,如何科学划分数据资源才能跑出最佳成绩?答案就在训练集、验证集与测试集的战略分工中!


         按照老规矩,先来一场知识巩固小测试,还有小福利哦:一周内答对的前三名的麦粉,奖励20麦豆!答案藏在上期神帖【简单总结一下机器学习中的几种常见的学习方式与区别】中~


AI知识问答(知识巩固)


1、监督学习的核心痛点是什么?


A. 模型结构复杂


B. 需大量人工标记数据


C. 无法发现数据隐藏规律


D. 仅支持分类任务


2、无监督学习最适合处理哪类任务?


A. 房价预测


B. 客户群体聚类


C. 图像分类


D. 股票涨跌预测


3、自监督学习如何减少对标注数据的依赖?


A. 通过数据自身生成监督信号


B. 融合半监督学习框架


C. 增加模型参数量


D. 采用强化学习机制


       


         通过这场测试,相信大家对"学习方式"的战略选择已了然于心!现在,我们直击模型训练的核心战场——如何用三大数据集为AI打造"训练-调试-终测"的全流程闭环?今日干货再度拉满,系好安全带,出发!


什么是训练集?什么是验证集?什么是测试集?(今日学习)


在机器学习和深度学习中,训练集、验证集和测试集是用于模型训练、评估和调优的不同数据集,以下是它们的具体介绍:


训练集


-定义:


是用于训练机器学习模型的数据集,包含了大量的输入特征和对应的目标输出,模型通过学习训练集中的数据来调整自身的参数,以尽可能准确地预测目标输出。


 


-作用:


让模型学习数据中的模式和规律,例如在一个预测房价的模型中,训练集包含了房屋的各种特征(面积、房间数等)以及对应的实际房价,模型通过对训练集的学习,建立起房屋特征与房价之间的关系。


 


验证集


-定义:


在模型训练过程中,用于评估模型性能和调整超参数的数据集。它不参与模型的训练过程,而是在训练过程中定期用来验证模型的泛化能力。


 


-作用:


帮助选择最优的模型超参数,防止模型过拟合。例如,在选择神经网络的层数、学习率等超参数时,可以通过观察模型在验证集上的性能表现来确定最佳的取值。


 


测试集


-定义:


在模型训练和调优完成后,用于最终评估模型性能的数据集。它是模型在训练过程中从未见过的数据,能够真实地反映模型在实际应用中的泛化能力。


 


-作用:


提供一个客观的评估指标,如准确率、召回率、均方误差等,来衡量模型的优劣。例如,一个图像分类模型在测试集上的准确率为90%,就表示该模型在对新的、未见过的图像进行分类时,预计有90%的图像能够被正确分类。


 


注解说明


超参数



  • 定义:模型训练前设定的参数,如学习率、网络层数,影响模型学习效果和速度。

  • 作用:超参数是机器学习模型中的“控制旋钮”,它们通过调整模型的复杂度、训练过程和泛化能力,直接影响模型的性能和效率。


过拟合



  • 定义:指的是模型在训练集表现好,但在新数据上差,即过度适应训练数据,泛化能力弱。过拟合通常是由于模型过于复杂或者训练数据量过少导致的。


 


特大消息!AIChat体验环境正式上线!


在这里,你可以尽情体验Smartbi 白泽 AIChat产品的强大功能,感受智能交互带来的便捷与乐趣。


体验中心入口:


AIChat体验环境(点击即可开启奇妙之旅)


帮助中心入口:


AIChat帮助中心遇到问题随时查阅)


相关学习视频:



欢迎大家前来体验~


 

发表于 5 小时前
B,B,A
回复

使用道具 举报

发表于 5 小时前

賺點積分

回复

使用道具 举报

发表于 25 分钟前
B、B、A
回复

使用道具 举报

发表于 23 分钟前
答案是 BBA
回复

使用道具 举报

高级模式
B Color Image Link Quote Code Smilies
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

4回帖数 0关注人数 63浏览人数
最后回复于:23 分钟前
快速回复 返回顶部 返回列表