九月下旬更新速递丨 AI赋能、技术实战与智能探索

金秋九月,下旬更新携AI发布会回放、丰富实战案例与进阶开发资源强势登场!助您深化技术理解,加速智能应用落地!

重点推荐Smartbi AIChat V4发布会圆满落幕!发布会精彩内容已完整上架,随点随看,深度回顾!共同步入智能新纪元!点击观看Smartbi AIChat V4发布会全程回放

麦学堂同步上架,加速学习

【Smartbi AIChat全新升级发布会根据不同篇章提炼上架,方便您按需定位,快速直达重点环节,高效吸收核心内容!

十分钟完整体验AIchat→ 只要10分钟时间,即可使用自己的本地数据快速体验AIChat所有功能。

一、任务持续上线

场景实战系列任务:数据处理,赢取278麦豆!通过实战任务巩固技能,真正掌握数据驱动的企业决策全流程

【BI知识闯关】数据回写填报太头疼?方案请收好!》→破解填报难题,提升数据处理效率。

【AI每日一学知识巩固】为什么Python 是目前人工智能领域最常用的编程语言》→深入解析Python在AI领域的优势,巩固编程基础。

二、实战技巧分享

数据回写填报太头疼?方案请收好!》→聚焦六大常见回写场景,拆解每类场景的实现思路,带您清晰掌握 Smartbi 数据回写的实操逻辑。

、开发技能突破

自定义计划任务案例 进一步了解自定义计划任务,从而提升自定义任务的开发效率和能力。

四、AI每日一学

【AI每日一学】为什么Python 是目前人工智能领域最常用的编程语言》→探讨Python为何能成为人工智能领域最常用的编程语言。

【AI每日一学】简单总结一下AI Agent的五个发展阶段从简单的指令响应到复杂的多智能体协作,AI Agent正逐步向着更拟人、更通用的方向演进。

五、全新素材上线

科技指标卡底座(二)→科技感视觉主题,深色科技风跃动,光线流动引爆焦点!

按需管控:业务人员导出最大行数设置在“导出规则”中,“导出动作”增加“部分导出”的选项

屏蔽“我的工作区”根据角色控制,屏蔽产品中“我的工作区”目录的功能,同时,对于该模块下的资源进行“保存”或者“另存为”,以及“移动到”时,对应的弹出框都不会显示“我的工作区”目录。

数据预警:异常数据可以落地到知识库在“预警推送”中,“推送渠道”增加“数据库”的选项,可以把异常数据存储到“知识库”的表中。

同一账号不能同时登录同一账号不能同时登录,后登录踢出先登录。


六、行业方案上线

汽车制造-财务数字化分析决策平台方案“核账型财务”向“经营型财务”升级

汽车制造-媒介平台ROI实时分析需求解决方案在激烈的市场竞争中,汽车行业对广告投放精准性要求极高,打破决策延时,敏捷响应时长,解决资源浪费,提升广告投放ROI!

为进一步提升认证服务的质量与体验,我们对认证业务进行全面优化升级。更多详情请看→Smartbi认证考试优化升级公告


麦粉社区
>
帖子详情

【AI每日一学】什么是训练集?什么是验证集?什么是测试集?

AIChat 发表于 2025-7-21 11:02
发表于 2025-7-21 11:02:01

麦粉集合!AI实战落地系列第十七弹极速启航!


         上回我们深入剖析了机器学习的四大"驾驶模式"——监督、无监督、半监督与自监督学习,就像掌握了不同路况的通行法则。而今天要揭秘的是"训练赛道"的黄金分割术——当模型踏上学习之旅,如何科学划分数据资源才能跑出最佳成绩?答案就在训练集、验证集与测试集的战略分工中!


         按照老规矩,先来一场知识巩固小测试,还有小福利哦:一周内答对的前三名的麦粉,奖励20麦豆!答案藏在上期神帖【简单总结一下机器学习中的几种常见的学习方式与区别】中~


AI知识问答(知识巩固)


1、监督学习的核心痛点是什么?


A. 模型结构复杂


B. 需大量人工标记数据


C. 无法发现数据隐藏规律


D. 仅支持分类任务


2、无监督学习最适合处理哪类任务?


A. 房价预测


B. 客户群体聚类


C. 图像分类


D. 股票涨跌预测


3、自监督学习如何减少对标注数据的依赖?


A. 通过数据自身生成监督信号


B. 融合半监督学习框架


C. 增加模型参数量


D. 采用强化学习机制


       


         通过这场测试,相信大家对"学习方式"的战略选择已了然于心!现在,我们直击模型训练的核心战场——如何用三大数据集为AI打造"训练-调试-终测"的全流程闭环?今日干货再度拉满,系好安全带,出发!


什么是训练集?什么是验证集?什么是测试集?(今日学习)


在机器学习和深度学习中,训练集、验证集和测试集是用于模型训练、评估和调优的不同数据集,以下是它们的具体介绍:


训练集


-定义:


是用于训练机器学习模型的数据集,包含了大量的输入特征和对应的目标输出,模型通过学习训练集中的数据来调整自身的参数,以尽可能准确地预测目标输出。


 


-作用:


让模型学习数据中的模式和规律,例如在一个预测房价的模型中,训练集包含了房屋的各种特征(面积、房间数等)以及对应的实际房价,模型通过对训练集的学习,建立起房屋特征与房价之间的关系。


 


验证集


-定义:


在模型训练过程中,用于评估模型性能和调整超参数的数据集。它不参与模型的训练过程,而是在训练过程中定期用来验证模型的泛化能力。


 


-作用:


帮助选择最优的模型超参数,防止模型过拟合。例如,在选择神经网络的层数、学习率等超参数时,可以通过观察模型在验证集上的性能表现来确定最佳的取值。


 


测试集


-定义:


在模型训练和调优完成后,用于最终评估模型性能的数据集。它是模型在训练过程中从未见过的数据,能够真实地反映模型在实际应用中的泛化能力。


 


-作用:


提供一个客观的评估指标,如准确率、召回率、均方误差等,来衡量模型的优劣。例如,一个图像分类模型在测试集上的准确率为90%,就表示该模型在对新的、未见过的图像进行分类时,预计有90%的图像能够被正确分类。


 


注解说明


超参数



  • 定义:模型训练前设定的参数,如学习率、网络层数,影响模型学习效果和速度。

  • 作用:超参数是机器学习模型中的“控制旋钮”,它们通过调整模型的复杂度、训练过程和泛化能力,直接影响模型的性能和效率。


过拟合



  • 定义:指的是模型在训练集表现好,但在新数据上差,即过度适应训练数据,泛化能力弱。过拟合通常是由于模型过于复杂或者训练数据量过少导致的。


 


特大消息!AIChat体验环境正式上线!


在这里,你可以尽情体验Smartbi 白泽 AIChat产品的强大功能,感受智能交互带来的便捷与乐趣。


体验中心入口:


AIChat体验环境(点击即可开启奇妙之旅)


帮助中心入口:


AIChat帮助中心遇到问题随时查阅)


相关学习视频:



欢迎大家前来体验~


 

发表于 2025-7-22 08:37:07
B,B,A
打赏人数1麦豆 +20 收起 理由
Smartbi社区管理员 + 20

查看全部打赏


回复

使用道具 1 举报

发表于 2025-7-22 08:55:27

賺點積分

回复

使用道具 举报

发表于 2025-7-22 13:55:17
B、B、A
打赏人数1麦豆 +20 收起 理由
Smartbi社区管理员 + 20

查看全部打赏


回复

使用道具 1 举报

发表于 2025-7-22 13:57:15
答案是 BBA
打赏人数1麦豆 +20 收起 理由
Smartbi社区管理员 + 20

查看全部打赏


回复

使用道具 举报

发表于 2025-7-28 09:00:06

BBA


回复

使用道具 举报

发表于 2025-8-2 15:05:02
答案是
BBA
回复

使用道具 举报

高级模式
B Color Image Link Quote Code Smilies
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

10回帖数 0关注人数 1097浏览人数
最后回复于:2025-8-2 15:05
快速回复 返回顶部 返回列表