九月下旬更新速递丨 AI赋能、技术实战与智能探索

金秋九月,下旬更新携AI发布会回放、丰富实战案例与进阶开发资源强势登场!助您深化技术理解,加速智能应用落地!

重点推荐Smartbi AIChat V4发布会圆满落幕!发布会精彩内容已完整上架,随点随看,深度回顾!共同步入智能新纪元!点击观看Smartbi AIChat V4发布会全程回放

麦学堂同步上架,加速学习

【Smartbi AIChat全新升级发布会根据不同篇章提炼上架,方便您按需定位,快速直达重点环节,高效吸收核心内容!

十分钟完整体验AIchat→ 只要10分钟时间,即可使用自己的本地数据快速体验AIChat所有功能。

一、任务持续上线

场景实战系列任务:数据处理,赢取278麦豆!通过实战任务巩固技能,真正掌握数据驱动的企业决策全流程

【BI知识闯关】数据回写填报太头疼?方案请收好!》→破解填报难题,提升数据处理效率。

【AI每日一学知识巩固】为什么Python 是目前人工智能领域最常用的编程语言》→深入解析Python在AI领域的优势,巩固编程基础。

二、实战技巧分享

数据回写填报太头疼?方案请收好!》→聚焦六大常见回写场景,拆解每类场景的实现思路,带您清晰掌握 Smartbi 数据回写的实操逻辑。

、开发技能突破

自定义计划任务案例 进一步了解自定义计划任务,从而提升自定义任务的开发效率和能力。

四、AI每日一学

【AI每日一学】为什么Python 是目前人工智能领域最常用的编程语言》→探讨Python为何能成为人工智能领域最常用的编程语言。

【AI每日一学】简单总结一下AI Agent的五个发展阶段从简单的指令响应到复杂的多智能体协作,AI Agent正逐步向着更拟人、更通用的方向演进。

五、全新素材上线

科技指标卡底座(二)→科技感视觉主题,深色科技风跃动,光线流动引爆焦点!

按需管控:业务人员导出最大行数设置在“导出规则”中,“导出动作”增加“部分导出”的选项

屏蔽“我的工作区”根据角色控制,屏蔽产品中“我的工作区”目录的功能,同时,对于该模块下的资源进行“保存”或者“另存为”,以及“移动到”时,对应的弹出框都不会显示“我的工作区”目录。

数据预警:异常数据可以落地到知识库在“预警推送”中,“推送渠道”增加“数据库”的选项,可以把异常数据存储到“知识库”的表中。

同一账号不能同时登录同一账号不能同时登录,后登录踢出先登录。


六、行业方案上线

汽车制造-财务数字化分析决策平台方案“核账型财务”向“经营型财务”升级

汽车制造-媒介平台ROI实时分析需求解决方案在激烈的市场竞争中,汽车行业对广告投放精准性要求极高,打破决策延时,敏捷响应时长,解决资源浪费,提升广告投放ROI!

为进一步提升认证服务的质量与体验,我们对认证业务进行全面优化升级。更多详情请看→Smartbi认证考试优化升级公告


麦粉社区
>
帖子详情

【AI每日一学】必须了解的与Al、大模型等相关的专业名词及解释(二)

AIChat 发表于 2025-5-28 16:09
发表于 2025-5-28 16:09:16

        解锁AI新知识,挑战超有趣小问题!每日3题,让你在紧张刺激的氛围中,手速与脑力齐飞!最快全部答对的麦粉将收获20麦豆惊喜奖励!答案就藏在上一篇【必须了解的与Al、大模型等相关的专业名词及解释(一)】的宝藏帖子里,速速翻阅,抢麦豆啦!


AI知识小问答(知识巩固)


1、以下哪项是人工智能(AI)的一个分支,能让机器从数据中学习模式和规律用于预测和决策?


A. 神经网络(NN)


B. 机器学习(ML)


C. 深度学习(DL)


D. 通用人工智能(AGI)


2、具备全面智能,可在任何智力任务上媲美人类的人工智能类型是?


A. 狭义人工智能(ANI)


B. 生成式人工智能(AIGC)


C. 通用人工智能(AGI)


D. 模型(Model)


3、通过模型生成新数据,如图像、文本、音频等的人工智能类型是?


A. 机器学习(ML)


B. 生成式人工智能(AIGC)


C. 模型(Model)


D. 深度学习(DL)


 


        经过一番紧张刺激的小问答挑战,相信大家对AI的基础知识已经有了更深刻的印象。现在,让我们暂时放下手中的“答题利器”,一同进入今天更加深入、更具挑战性的学习环节——AI模型架构类知识。在这里,我们将一起探索那些支撑AI强大功能的底层架构与机制,揭开它们神秘而精妙的面纱。准备好了吗?让我们一同踏上这场探索AI模型架构的奇妙之旅吧!


 


模型架构类(今日学习)


1.Transformer架构(Transformer Architecture):


基于注意力机制的深度学习架构,在NLP、CV等领域广泛应用。


 


2.注意力机制(Attention Mechanism):


使模型处理数据时关注重要信息。


 


3.多头注意力(Multi-Head Attention):


Transformer架构中多个注意力头并行,获取更丰富特征。


 


4.循环神经网络(Recurrent Neural Network,RNN):


处理序列数据,能记忆之前输入,但长序列处理有局限。


 


5.长短期记忆网络(Long Short-Term Memory,LSTM):


RNN变体,解决梯度消失和爆炸问题。


 


6.门控循环单元(Gated Recurrent Unit,GRU):


RNN的简单变体,计算效率高。


 


7.卷积神经网络(Convolutional Neural Network,CNN):


常用于图像数据,通过卷积、池化层提取特征。


 


8.全连接层(Fully Connected Layer):


神经网络层,输入与输出节点全连接。


 


9.混合专家模型(Mixture of Experts,MoE):


多个“专家”网络并行,门控机制选输出,平衡效率和性能。


 


10.位置编码(Positional Encoding):


Transformer中为模型提供输入序列元素位置信息


 


11.自注意力机制(Self-Attention Mechanism):


输入序列元素可互相关注,捕捉长距离依赖。


 


12.编码器-解码器架构(Encoder-Decoder Architectur e):


处理序列到序列任务,如机器翻译。


 


13.图神经网络(Graph Neural Network,GNN):


处理图形结构数据,用于社交网络分析等。

发表于 2025-5-28 18:19:25
答案是BCB
打赏人数1麦豆 +20 收起 理由
Smartbi社区管理员 + 20 骚年,我看好你哦

查看全部打赏


回复

使用道具 举报

发表于 2025-5-29 16:06:21
答案是BCB

回复

使用道具 举报

高级模式
B Color Image Link Quote Code Smilies
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

6回帖数 1关注人数 777浏览人数
最后回复于:2025-5-29 18:08
快速回复 返回顶部 返回列表