七月上旬更新速递丨 聚焦集成、安全与AI深度进化

更新亮点: 本次重点强化系统集成能力与AI认知升级,新增4大核心模块9项资源,优化4项资源,点击标题了解(持续互动赢麦豆,解锁高阶技能)

重点推荐:《场景化数据分析实战》课程操作手册

配套六月王炸课程的全套落地指南,手把手教你复现实战场景!

二、实战技巧分享

高效处理资源集成难题》→ 从基础出发,深入探究集成的秘密

三、开发技能突破

第三方系统调用Smartbi接口》→讲解系统集成时的jar包获取,以及集成时代码调用的基本流程。

集成接口介绍》→梳理Smartbi目前提供的接口,以及不同接口的调用流程。

AI每日一学

DeepSeek-R1-0528模型升级:推理与生态的双重升级》→ 解析模型性能提升40%的关键技术 (技术前沿)

简单总结一下机器学习中的几种常见的学习方式与区别》→ 监督/无监督/强化学习差异与应用场景图解 (基础重构)

五、资源更新

CAS单点登录 V2版》上线→ 接入到 CAS 平台中,并实现单点登录

组织/用户/角色信息管理API接口》上线→ 一套 HTTP API的组织、用户、角色信息管理接口

竹云统一身份认证平台组织用户同步对接》上线→ Smartbi封装对应的服务接口,给竹云的统一身份认证平台实时调用,完成组织、用户和角色信息的实时同步。

交互式仪表盘支持自定义字体》优化→ 修复了文本组件编辑状态不生效的问题

只允许外网某种移动端APP访问》优化→ 针对V11版本,增加了钉钉、企业微信访问限制功能

AD域(LDAP/LDAPS)登录验证》优化→ 修复了“更新白名单状态之前没有判断判断用户是否存”的问题

元数据分析落地到知识库》优化→ 增加获取资源创建者的逻辑判断,对空值空对象等情况做优化

麦粉社区
>
帖子详情

【AI每日一学】必须了解的与Al、大模型等相关的专业名词及解释(二)

AIChat 发表于 2025-5-28 16:09
发表于 2025-5-28 16:09:16

        解锁AI新知识,挑战超有趣小问题!每日3题,让你在紧张刺激的氛围中,手速与脑力齐飞!最快全部答对的麦粉将收获20麦豆惊喜奖励!答案就藏在上一篇【必须了解的与Al、大模型等相关的专业名词及解释(一)】的宝藏帖子里,速速翻阅,抢麦豆啦!


AI知识小问答(知识巩固)


1、以下哪项是人工智能(AI)的一个分支,能让机器从数据中学习模式和规律用于预测和决策?


A. 神经网络(NN)


B. 机器学习(ML)


C. 深度学习(DL)


D. 通用人工智能(AGI)


2、具备全面智能,可在任何智力任务上媲美人类的人工智能类型是?


A. 狭义人工智能(ANI)


B. 生成式人工智能(AIGC)


C. 通用人工智能(AGI)


D. 模型(Model)


3、通过模型生成新数据,如图像、文本、音频等的人工智能类型是?


A. 机器学习(ML)


B. 生成式人工智能(AIGC)


C. 模型(Model)


D. 深度学习(DL)


 


        经过一番紧张刺激的小问答挑战,相信大家对AI的基础知识已经有了更深刻的印象。现在,让我们暂时放下手中的“答题利器”,一同进入今天更加深入、更具挑战性的学习环节——AI模型架构类知识。在这里,我们将一起探索那些支撑AI强大功能的底层架构与机制,揭开它们神秘而精妙的面纱。准备好了吗?让我们一同踏上这场探索AI模型架构的奇妙之旅吧!


 


模型架构类(今日学习)


1.Transformer架构(Transformer Architecture):


基于注意力机制的深度学习架构,在NLP、CV等领域广泛应用。


 


2.注意力机制(Attention Mechanism):


使模型处理数据时关注重要信息。


 


3.多头注意力(Multi-Head Attention):


Transformer架构中多个注意力头并行,获取更丰富特征。


 


4.循环神经网络(Recurrent Neural Network,RNN):


处理序列数据,能记忆之前输入,但长序列处理有局限。


 


5.长短期记忆网络(Long Short-Term Memory,LSTM):


RNN变体,解决梯度消失和爆炸问题。


 


6.门控循环单元(Gated Recurrent Unit,GRU):


RNN的简单变体,计算效率高。


 


7.卷积神经网络(Convolutional Neural Network,CNN):


常用于图像数据,通过卷积、池化层提取特征。


 


8.全连接层(Fully Connected Layer):


神经网络层,输入与输出节点全连接。


 


9.混合专家模型(Mixture of Experts,MoE):


多个“专家”网络并行,门控机制选输出,平衡效率和性能。


 


10.位置编码(Positional Encoding):


Transformer中为模型提供输入序列元素位置信息


 


11.自注意力机制(Self-Attention Mechanism):


输入序列元素可互相关注,捕捉长距离依赖。


 


12.编码器-解码器架构(Encoder-Decoder Architectur e):


处理序列到序列任务,如机器翻译。


 


13.图神经网络(Graph Neural Network,GNN):


处理图形结构数据,用于社交网络分析等。

发表于 2025-5-28 18:19:25
答案是BCB
打赏人数1麦豆 +20 收起 理由
Smartbi社区管理员 + 20 骚年,我看好你哦

查看全部打赏


回复

使用道具 举报

发表于 2025-5-29 16:06:21
答案是BCB

回复

使用道具 举报

高级模式
B Color Image Link Quote Code Smilies
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

6回帖数 1关注人数 476浏览人数
最后回复于:2025-5-29 18:08
快速回复 返回顶部 返回列表