七月上旬更新速递丨 聚焦集成、安全与AI深度进化

更新亮点: 本次重点强化系统集成能力与AI认知升级,新增4大核心模块9项资源,优化4项资源,点击标题了解(持续互动赢麦豆,解锁高阶技能)

重点推荐:《场景化数据分析实战》课程操作手册

配套六月王炸课程的全套落地指南,手把手教你复现实战场景!

二、实战技巧分享

高效处理资源集成难题》→ 从基础出发,深入探究集成的秘密

三、开发技能突破

第三方系统调用Smartbi接口》→讲解系统集成时的jar包获取,以及集成时代码调用的基本流程。

集成接口介绍》→梳理Smartbi目前提供的接口,以及不同接口的调用流程。

AI每日一学

DeepSeek-R1-0528模型升级:推理与生态的双重升级》→ 解析模型性能提升40%的关键技术 (技术前沿)

简单总结一下机器学习中的几种常见的学习方式与区别》→ 监督/无监督/强化学习差异与应用场景图解 (基础重构)

五、资源更新

CAS单点登录 V2版》上线→ 接入到 CAS 平台中,并实现单点登录

组织/用户/角色信息管理API接口》上线→ 一套 HTTP API的组织、用户、角色信息管理接口

竹云统一身份认证平台组织用户同步对接》上线→ Smartbi封装对应的服务接口,给竹云的统一身份认证平台实时调用,完成组织、用户和角色信息的实时同步。

交互式仪表盘支持自定义字体》优化→ 修复了文本组件编辑状态不生效的问题

只允许外网某种移动端APP访问》优化→ 针对V11版本,增加了钉钉、企业微信访问限制功能

AD域(LDAP/LDAPS)登录验证》优化→ 修复了“更新白名单状态之前没有判断判断用户是否存”的问题

元数据分析落地到知识库》优化→ 增加获取资源创建者的逻辑判断,对空值空对象等情况做优化

麦粉社区
>
帖子详情

python学习篇-pandas库(九)

数据挖掘 发表于 2019-12-25 16:32
发表于 2019-12-25 16:32:45
插值法填补缺失值
函数DataFrame.interpolate()
参数method:默认linear
  • ‘linear’:忽略索引并将值视为等间距
  • index’, ‘values’:使用索引的实际数值
  • ‘pad’:用现有的数据填写NaN
  • ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘spline’, ‘barycentric’, ‘polynomial’:
      'polynomial'和'spline'都要求指定一个order(int)

参数limit:int,要填充的NaN值的最大个数,必须大于0
参数limit_direction:{‘forward’, ‘backward’, ‘both’}, default ‘forward’,如果指定了limit,则按此方向填充连续的NaN
1、Series通过linear方法填充NaN
  1. s = pd.Series([0, 2, np.nan, np.nan,8])
  2. print(s)
  3. s.interpolate(method='linear')
复制代码
524055e031678965a3.png
2、根据现有数据填充NaN
  1. s = pd.Series([0, 2, np.nan, np.nan,8,np.nan])
  2. print(s)
  3. s.interpolate(method='pad',limit=1)
复制代码
718705e03173cb49de.png
3、使用多项式方法填充
  1. s = pd.Series([0, 2, np.nan, np.nan,8,np.nan])
  2. print(s)
  3. s.interpolate(method='polynomial',order=2)
复制代码
506765e031b8ff322c.png
4、指点方向填充数值
  1. df = pd.DataFrame([(0.0, np.nan, -1.0, 1.0),
  2. ...                    (np.nan, 2.0, np.nan, np.nan),
  3. ...                    (2.0, 3.0, np.nan, 9.0),
  4. ...                    (np.nan, 4.0, -4.0, 16.0)],
  5. ...                   columns=list('abcd'))
  6. print(df)
  7. df.interpolate(methmod='linear',limit_direction='backward',axis=0)
复制代码
321795e031d7118fea.png
5、对某一列作填充数值操作
  1. print(df['d'])
  2. df['d'].interpolate(method='polynomial',order=2)
复制代码
349635e031e7788e76.png
高级模式
B Color Image Link Quote Code Smilies
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

0回帖数 0关注人数 6048浏览人数
最后回复于:2019-12-25 16:32
快速回复 返回顶部 返回列表