一月初新内容速递丨数据管控、图表应用与函数启航

新年伊始,学习继续!一月上旬更新聚焦数据安全、图表实战、函数入门与场景深化,助你在数据智能的旅程中稳健开年!

一、技术经验分享

精细化管控数据导出,让敏感数据无处泄露!→加强数据安全管理,有效防止敏感信息外泄,提升企业数据合规性。

二、任务持续上线

【图表应用】散点图精准洞察分布→学习散点图制作与分析,掌握数据分布洞察技巧。
【函数】新手村试炼:计算度量入门挑战→函数入门实战,轻松攻克计算度量基础。
【图表应用】热力地图:看透市场浓度的战略眼→掌握热力地图绘制,直观识别市场热度分布。
BI知识闯关】精细化管控数据导出,让敏感数据无处泄露!》→巩固数据安全知识,提升管控实战能力。
【新年活动】年货采购数据侦探→结合新年主题,锻炼数据筛选与分析能力。

三、场景应用精选

价值引擎:汽车制造财务分析主题课程→延续财务数据分析实战,助力企业决策与价值挖掘。
【地图】散点地图:精确落位,洞察分布→学习散点地图应用,实现地理位置数据的可视化呈现。
【地图】热力地图:一眼识别业务“高地”与“洼地”》→掌握热力地图在业务分析中的实战应用。

四、二次开发视频更新

Excel导入模板扩展校验类》→深入学习Excel导入功能的扩展校验技术,提升数据导入的准确性与规范性。

五、活动进行中

新年第①弹|年货采购数据挑战:你能答对几题?》→趣味数据挑战赛,检验你的数据分析能力,赢取开年好礼。

六、官方通知发布

2025年度任务排行榜大揭晓!》→回顾2025年度学习成果,揭晓任务完成排行榜,激励持续学习。

七、函数应用入门

【函数课堂】函数总览篇:告别“不会用计算度量”的焦虑》→系统讲解函数使用,帮助你轻松入门计算度量,摆脱使用困惑。

麦粉社区
>
帖子详情

测试服务连接失败

数据挖掘 发表于 2020-9-29 11:19
发表于 2020-9-29 11:19:54
本帖最后由 麦粉432276 于 2020-9-29 11:30 编辑

请问这个要怎么获取正确的服务地址
QQ截图20200929112801.png
发表于 2020-9-29 11:19:55
要部署好数据挖掘,然后进行配置;https://wiki.smartbi.com.cn/pages/viewpage.action?pageId=47490477
回复

使用道具 举报

发表于 2020-9-30 09:10:15
已经部署了数据挖掘引擎了吗?
回复

使用道具 举报

发表于 2020-10-9 10:52:58
Jaylin 发表于 2020-9-30 09:10
已经部署了数据挖掘引擎了吗?

是上面那个引擎地址吗,还是要另外部署什么?上面那个引擎地址是连接成功的
回复

使用道具 举报

发表于 2020-10-10 13:58:07
这个引擎是要部署数据挖掘引擎的。你为什么要配置这里呢?
回复

使用道具 举报

发表于 2020-10-16 10:29:28
我执行数据挖掘的时候报错,第一次执行到抽取报错,第二次点击执行就报错;

第一次抽取报错日志:
  1. 2020-10-16 10:09:57.003 [85] INFO node.GenericNode.start:90 - Node start. (id:8b8ad4503f2aeb6f80912e7edcbfc366,name:FIT_NODE)
  2. 2020-10-16 10:09:57.140 [85] ERROR node.GenericNode.handleExecuteError:117 - Node execution failed.(id:8b8ad4503f2aeb6f80912e7edcbfc366,name:FIT_NODE)
  3. java.lang.IllegalArgumentException: requirement failed: Column CITY must be of type numeric but was actually of type string.
  4.         at scala.Predef$.require(Predef.scala:224) ~[scala-library-2.11.12.jar:?]
  5.         at org.apache.spark.ml.util.SchemaUtils$.checkNumericType(SchemaUtils.scala:76) ~[spark-mllib_2.11-2.4.0.jar:2.4.0]
  6.         at org.apache.spark.ml.feature.QuantileDiscretizer$anonfun$transformSchema$1.apply(QuantileDiscretizer.scala:196) ~[spark-mllib_2.11-2.4.0.jar:2.4.0]
  7.         at org.apache.spark.ml.feature.QuantileDiscretizer$anonfun$transformSchema$1.apply(QuantileDiscretizer.scala:195) ~[spark-mllib_2.11-2.4.0.jar:2.4.0]
  8.         at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33) ~[scala-library-2.11.12.jar:?]
  9.         at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186) ~[scala-library-2.11.12.jar:?]
  10.         at org.apache.spark.ml.feature.QuantileDiscretizer.transformSchema(QuantileDiscretizer.scala:195) ~[spark-mllib_2.11-2.4.0.jar:2.4.0]
  11.         at org.apache.spark.ml.Pipeline$anonfun$transformSchema$4.apply(Pipeline.scala:184) ~[spark-mllib_2.11-2.4.0.jar:2.4.0]
  12.         at org.apache.spark.ml.Pipeline$anonfun$transformSchema$4.apply(Pipeline.scala:184) ~[spark-mllib_2.11-2.4.0.jar:2.4.0]
  13.         at scala.collection.IndexedSeqOptimized$class.foldl(IndexedSeqOptimized.scala:57) ~[scala-library-2.11.12.jar:?]
  14.         at scala.collection.IndexedSeqOptimized$class.foldLeft(IndexedSeqOptimized.scala:66) ~[scala-library-2.11.12.jar:?]
  15.         at scala.collection.mutable.ArrayOps$ofRef.foldLeft(ArrayOps.scala:186) ~[scala-library-2.11.12.jar:?]
  16.         at org.apache.spark.ml.Pipeline.transformSchema(Pipeline.scala:184) ~[spark-mllib_2.11-2.4.0.jar:2.4.0]
  17.         at org.apache.spark.ml.PipelineStage.transformSchema(Pipeline.scala:74) ~[spark-mllib_2.11-2.4.0.jar:2.4.0]
  18.         at org.apache.spark.ml.Pipeline.fit(Pipeline.scala:136) ~[spark-mllib_2.11-2.4.0.jar:2.4.0]
  19.         at smartbix.datamining.engine.execute.node.feature.BucketizerNode$BucketizerEvent.fit(BucketizerNode.java:109) ~[EngineCommonNode-1.0-SNAPSHOT.jar:?]
  20.         at smartbix.datamining.engine.execute.node.feature.BucketizerNode$BucketizerEvent.fit(BucketizerNode.java:58) ~[EngineCommonNode-1.0-SNAPSHOT.jar:?]
  21.         at smartbix.datamining.engine.execute.node.train.FitNode.execute(FitNode.java:27) ~[EngineCommonNode-1.0-SNAPSHOT.jar:?]
  22.         at smartbix.datamining.engine.execute.node.GenericNode.start(GenericNode.java:101) [EngineCore-1.0-SNAPSHOT.jar:?]
  23.         at smartbix.datamining.engine.experiment.execute.node.ExperimentNodeExecutor.run(ExperimentNodeExecutor.java:40) [EngineExperiment-1.0-SNAPSHOT.jar:?]
  24.         at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) [?:1.8.0_202-ea]
  25.         at java.util.concurrent.FutureTask.run(FutureTask.java:266) [?:1.8.0_202-ea]
  26.         at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) [?:1.8.0_202-ea]
  27.         at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) [?:1.8.0_202-ea]
  28.         at java.lang.Thread.run(Thread.java:748) [?:1.8.0_202-ea]
  29. 2020-10-16 10:09:57.204 [85] INFO reflections.Reflections.scan:232 - Reflections took 54 ms to scan 7 urls, producing 88 keys and 501 values
  30. 2020-10-16 10:09:57.259 [85] INFO flow.ExperimentGenericFlow.fail:204 - Flow failed,(id:I8ac26e200174d26bd26beaea0174d3a424b40023,name:日利润挖掘)
  31. 2020-10-16 10:09:57.259 [85] INFO flow.ExperimentGenericFlow.close:235 - Flow closed.(id:I8ac26e200174d26bd26beaea0174d3a424b40023)
  32. 2020-10-16 10:09:57.260 [85] INFO flow.ExperimentSparkFlowContext.close:34 - clear active session
复制代码

回复

使用道具 举报

高级模式
B Color Image Link Quote Code Smilies
您需要登录后才可以回帖 登录 | 立即注册

6回帖数 0关注人数 10753浏览人数
最后回复于:2020-10-16 10:29

社区

指南

快速回复 返回顶部 返回列表