月下旬更新速递丨 实战场景深化、集成能力升级与开发进阶

初冬来临,一波热气腾腾的更新也准时抵达!我们聚焦实战技巧、集成增强与开发进阶,一系列新功能与新教程,助你在数据分析与系统开发的效率上再进一步。

一、实战技巧精讲

雷达图:多维度数据的“透视镜”,3步读懂数据真相》→ 聚焦雷达图核心应用场景,快速掌握多对象、多维度数据的可视化分析方法。

用图表解锁你的生活“数据密码”!》→ 探索图表在日常场景中的应用,让数据解读更直观、更具操作性。

二、直播上线

2025新特性实战解读(上)数据分析效率倍增秘籍》→ 解析2025新特性落地路径,助力实现数据分析效率成倍提升。

三、技术经验分享

【专家分享】数据排序的“权力游戏”:优先级规则决定谁先谁后》→解读高级排序的业务配置逻辑,让关键数据始终处于优先展示位置。

四、二次开发视频

扩展包开发知识点——前端改造》→从需求分析入手到最终实现的全流程讲解,帮助您快速入门上手Smartbi前端改造。

五、任务持续上线

【初级任务】解锁生活“数据密码”,可视化创意实践任务》→发起可视化创意任务,推动数据表达更生动、更具趣味性。

【初级任务】玩转雷达图解数据,200麦豆等你拿!》→推出雷达图实战任务,以激励方式提升多维数据分析技能。

六、全新素材上线

AD域(LDAP/LDAPS)登录验证V2》→扩展域账号登录支持,实现与企业Windows认证体系无缝对接。

数据模型:对接RestfulAPI接口》→打通数据模型与RestfulAPI对接通道,提升系统集成与数据获取效率。

计划任务:定时清空用户属性缓存→引入缓存自动清理机制,确保权限变更实时生效、业务数据及时更新。

用户同步:BI系统自定义用户所属组》→优化用户组同步逻辑,实现自定义组信息自动识别与补全。

审核流程:可以调用自助ETL》→增强审核流程集成能力,支持在用户任务节点直接调用自助ETL过程。

麦粉社区
>
帖子详情

测试服务连接失败

数据挖掘 发表于 2020-9-29 11:19
发表于 2020-9-29 11:19:54
本帖最后由 麦粉432276 于 2020-9-29 11:30 编辑

请问这个要怎么获取正确的服务地址
QQ截图20200929112801.png
发表于 2020-9-29 11:19:55
要部署好数据挖掘,然后进行配置;https://wiki.smartbi.com.cn/pages/viewpage.action?pageId=47490477
回复

使用道具 举报

发表于 2020-9-30 09:10:15
已经部署了数据挖掘引擎了吗?
回复

使用道具 举报

发表于 2020-10-9 10:52:58
Jaylin 发表于 2020-9-30 09:10
已经部署了数据挖掘引擎了吗?

是上面那个引擎地址吗,还是要另外部署什么?上面那个引擎地址是连接成功的
回复

使用道具 举报

发表于 2020-10-10 13:58:07
这个引擎是要部署数据挖掘引擎的。你为什么要配置这里呢?
回复

使用道具 举报

发表于 2020-10-16 10:29:28
我执行数据挖掘的时候报错,第一次执行到抽取报错,第二次点击执行就报错;

第一次抽取报错日志:
  1. 2020-10-16 10:09:57.003 [85] INFO node.GenericNode.start:90 - Node start. (id:8b8ad4503f2aeb6f80912e7edcbfc366,name:FIT_NODE)
  2. 2020-10-16 10:09:57.140 [85] ERROR node.GenericNode.handleExecuteError:117 - Node execution failed.(id:8b8ad4503f2aeb6f80912e7edcbfc366,name:FIT_NODE)
  3. java.lang.IllegalArgumentException: requirement failed: Column CITY must be of type numeric but was actually of type string.
  4.         at scala.Predef$.require(Predef.scala:224) ~[scala-library-2.11.12.jar:?]
  5.         at org.apache.spark.ml.util.SchemaUtils$.checkNumericType(SchemaUtils.scala:76) ~[spark-mllib_2.11-2.4.0.jar:2.4.0]
  6.         at org.apache.spark.ml.feature.QuantileDiscretizer$anonfun$transformSchema$1.apply(QuantileDiscretizer.scala:196) ~[spark-mllib_2.11-2.4.0.jar:2.4.0]
  7.         at org.apache.spark.ml.feature.QuantileDiscretizer$anonfun$transformSchema$1.apply(QuantileDiscretizer.scala:195) ~[spark-mllib_2.11-2.4.0.jar:2.4.0]
  8.         at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33) ~[scala-library-2.11.12.jar:?]
  9.         at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186) ~[scala-library-2.11.12.jar:?]
  10.         at org.apache.spark.ml.feature.QuantileDiscretizer.transformSchema(QuantileDiscretizer.scala:195) ~[spark-mllib_2.11-2.4.0.jar:2.4.0]
  11.         at org.apache.spark.ml.Pipeline$anonfun$transformSchema$4.apply(Pipeline.scala:184) ~[spark-mllib_2.11-2.4.0.jar:2.4.0]
  12.         at org.apache.spark.ml.Pipeline$anonfun$transformSchema$4.apply(Pipeline.scala:184) ~[spark-mllib_2.11-2.4.0.jar:2.4.0]
  13.         at scala.collection.IndexedSeqOptimized$class.foldl(IndexedSeqOptimized.scala:57) ~[scala-library-2.11.12.jar:?]
  14.         at scala.collection.IndexedSeqOptimized$class.foldLeft(IndexedSeqOptimized.scala:66) ~[scala-library-2.11.12.jar:?]
  15.         at scala.collection.mutable.ArrayOps$ofRef.foldLeft(ArrayOps.scala:186) ~[scala-library-2.11.12.jar:?]
  16.         at org.apache.spark.ml.Pipeline.transformSchema(Pipeline.scala:184) ~[spark-mllib_2.11-2.4.0.jar:2.4.0]
  17.         at org.apache.spark.ml.PipelineStage.transformSchema(Pipeline.scala:74) ~[spark-mllib_2.11-2.4.0.jar:2.4.0]
  18.         at org.apache.spark.ml.Pipeline.fit(Pipeline.scala:136) ~[spark-mllib_2.11-2.4.0.jar:2.4.0]
  19.         at smartbix.datamining.engine.execute.node.feature.BucketizerNode$BucketizerEvent.fit(BucketizerNode.java:109) ~[EngineCommonNode-1.0-SNAPSHOT.jar:?]
  20.         at smartbix.datamining.engine.execute.node.feature.BucketizerNode$BucketizerEvent.fit(BucketizerNode.java:58) ~[EngineCommonNode-1.0-SNAPSHOT.jar:?]
  21.         at smartbix.datamining.engine.execute.node.train.FitNode.execute(FitNode.java:27) ~[EngineCommonNode-1.0-SNAPSHOT.jar:?]
  22.         at smartbix.datamining.engine.execute.node.GenericNode.start(GenericNode.java:101) [EngineCore-1.0-SNAPSHOT.jar:?]
  23.         at smartbix.datamining.engine.experiment.execute.node.ExperimentNodeExecutor.run(ExperimentNodeExecutor.java:40) [EngineExperiment-1.0-SNAPSHOT.jar:?]
  24.         at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) [?:1.8.0_202-ea]
  25.         at java.util.concurrent.FutureTask.run(FutureTask.java:266) [?:1.8.0_202-ea]
  26.         at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) [?:1.8.0_202-ea]
  27.         at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) [?:1.8.0_202-ea]
  28.         at java.lang.Thread.run(Thread.java:748) [?:1.8.0_202-ea]
  29. 2020-10-16 10:09:57.204 [85] INFO reflections.Reflections.scan:232 - Reflections took 54 ms to scan 7 urls, producing 88 keys and 501 values
  30. 2020-10-16 10:09:57.259 [85] INFO flow.ExperimentGenericFlow.fail:204 - Flow failed,(id:I8ac26e200174d26bd26beaea0174d3a424b40023,name:日利润挖掘)
  31. 2020-10-16 10:09:57.259 [85] INFO flow.ExperimentGenericFlow.close:235 - Flow closed.(id:I8ac26e200174d26bd26beaea0174d3a424b40023)
  32. 2020-10-16 10:09:57.260 [85] INFO flow.ExperimentSparkFlowContext.close:34 - clear active session
复制代码

回复

使用道具 举报

高级模式
B Color Image Link Quote Code Smilies
您需要登录后才可以回帖 登录 | 立即注册

6回帖数 0关注人数 10462浏览人数
最后回复于:2020-10-16 10:29
快速回复 返回顶部 返回列表