九月下旬更新速递丨 AI赋能、技术实战与智能探索

金秋九月,下旬更新携AI发布会回放、丰富实战案例与进阶开发资源强势登场!助您深化技术理解,加速智能应用落地!

重点推荐Smartbi AIChat V4发布会圆满落幕!发布会精彩内容已完整上架,随点随看,深度回顾!共同步入智能新纪元!点击观看Smartbi AIChat V4发布会全程回放

麦学堂同步上架,加速学习

【Smartbi AIChat全新升级发布会根据不同篇章提炼上架,方便您按需定位,快速直达重点环节,高效吸收核心内容!

十分钟完整体验AIchat→ 只要10分钟时间,即可使用自己的本地数据快速体验AIChat所有功能。

一、任务持续上线

场景实战系列任务:数据处理,赢取278麦豆!通过实战任务巩固技能,真正掌握数据驱动的企业决策全流程

【BI知识闯关】数据回写填报太头疼?方案请收好!》→破解填报难题,提升数据处理效率。

【AI每日一学知识巩固】为什么Python 是目前人工智能领域最常用的编程语言》→深入解析Python在AI领域的优势,巩固编程基础。

二、实战技巧分享

数据回写填报太头疼?方案请收好!》→聚焦六大常见回写场景,拆解每类场景的实现思路,带您清晰掌握 Smartbi 数据回写的实操逻辑。

、开发技能突破

自定义计划任务案例 进一步了解自定义计划任务,从而提升自定义任务的开发效率和能力。

四、AI每日一学

【AI每日一学】为什么Python 是目前人工智能领域最常用的编程语言》→探讨Python为何能成为人工智能领域最常用的编程语言。

【AI每日一学】简单总结一下AI Agent的五个发展阶段从简单的指令响应到复杂的多智能体协作,AI Agent正逐步向着更拟人、更通用的方向演进。

五、全新素材上线

科技指标卡底座(二)→科技感视觉主题,深色科技风跃动,光线流动引爆焦点!

按需管控:业务人员导出最大行数设置在“导出规则”中,“导出动作”增加“部分导出”的选项

屏蔽“我的工作区”根据角色控制,屏蔽产品中“我的工作区”目录的功能,同时,对于该模块下的资源进行“保存”或者“另存为”,以及“移动到”时,对应的弹出框都不会显示“我的工作区”目录。

数据预警:异常数据可以落地到知识库在“预警推送”中,“推送渠道”增加“数据库”的选项,可以把异常数据存储到“知识库”的表中。

同一账号不能同时登录同一账号不能同时登录,后登录踢出先登录。


六、行业方案上线

汽车制造-财务数字化分析决策平台方案“核账型财务”向“经营型财务”升级

汽车制造-媒介平台ROI实时分析需求解决方案在激烈的市场竞争中,汽车行业对广告投放精准性要求极高,打破决策延时,敏捷响应时长,解决资源浪费,提升广告投放ROI!

为进一步提升认证服务的质量与体验,我们对认证业务进行全面优化升级。更多详情请看→Smartbi认证考试优化升级公告


麦粉社区
>
帖子详情

测试服务连接失败

数据挖掘 发表于 2020-9-29 11:19
发表于 2020-9-29 11:19:54
本帖最后由 麦粉432276 于 2020-9-29 11:30 编辑

请问这个要怎么获取正确的服务地址
QQ截图20200929112801.png
发表于 2020-9-29 11:19:55
要部署好数据挖掘,然后进行配置;https://wiki.smartbi.com.cn/pages/viewpage.action?pageId=47490477
回复

使用道具 举报

发表于 2020-9-30 09:10:15
已经部署了数据挖掘引擎了吗?
回复

使用道具 举报

发表于 2020-10-9 10:52:58
Jaylin 发表于 2020-9-30 09:10
已经部署了数据挖掘引擎了吗?

是上面那个引擎地址吗,还是要另外部署什么?上面那个引擎地址是连接成功的
回复

使用道具 举报

发表于 2020-10-10 13:58:07
这个引擎是要部署数据挖掘引擎的。你为什么要配置这里呢?
回复

使用道具 举报

发表于 2020-10-16 10:29:28
我执行数据挖掘的时候报错,第一次执行到抽取报错,第二次点击执行就报错;

第一次抽取报错日志:
  1. 2020-10-16 10:09:57.003 [85] INFO node.GenericNode.start:90 - Node start. (id:8b8ad4503f2aeb6f80912e7edcbfc366,name:FIT_NODE)
  2. 2020-10-16 10:09:57.140 [85] ERROR node.GenericNode.handleExecuteError:117 - Node execution failed.(id:8b8ad4503f2aeb6f80912e7edcbfc366,name:FIT_NODE)
  3. java.lang.IllegalArgumentException: requirement failed: Column CITY must be of type numeric but was actually of type string.
  4.         at scala.Predef$.require(Predef.scala:224) ~[scala-library-2.11.12.jar:?]
  5.         at org.apache.spark.ml.util.SchemaUtils$.checkNumericType(SchemaUtils.scala:76) ~[spark-mllib_2.11-2.4.0.jar:2.4.0]
  6.         at org.apache.spark.ml.feature.QuantileDiscretizer$anonfun$transformSchema$1.apply(QuantileDiscretizer.scala:196) ~[spark-mllib_2.11-2.4.0.jar:2.4.0]
  7.         at org.apache.spark.ml.feature.QuantileDiscretizer$anonfun$transformSchema$1.apply(QuantileDiscretizer.scala:195) ~[spark-mllib_2.11-2.4.0.jar:2.4.0]
  8.         at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33) ~[scala-library-2.11.12.jar:?]
  9.         at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186) ~[scala-library-2.11.12.jar:?]
  10.         at org.apache.spark.ml.feature.QuantileDiscretizer.transformSchema(QuantileDiscretizer.scala:195) ~[spark-mllib_2.11-2.4.0.jar:2.4.0]
  11.         at org.apache.spark.ml.Pipeline$anonfun$transformSchema$4.apply(Pipeline.scala:184) ~[spark-mllib_2.11-2.4.0.jar:2.4.0]
  12.         at org.apache.spark.ml.Pipeline$anonfun$transformSchema$4.apply(Pipeline.scala:184) ~[spark-mllib_2.11-2.4.0.jar:2.4.0]
  13.         at scala.collection.IndexedSeqOptimized$class.foldl(IndexedSeqOptimized.scala:57) ~[scala-library-2.11.12.jar:?]
  14.         at scala.collection.IndexedSeqOptimized$class.foldLeft(IndexedSeqOptimized.scala:66) ~[scala-library-2.11.12.jar:?]
  15.         at scala.collection.mutable.ArrayOps$ofRef.foldLeft(ArrayOps.scala:186) ~[scala-library-2.11.12.jar:?]
  16.         at org.apache.spark.ml.Pipeline.transformSchema(Pipeline.scala:184) ~[spark-mllib_2.11-2.4.0.jar:2.4.0]
  17.         at org.apache.spark.ml.PipelineStage.transformSchema(Pipeline.scala:74) ~[spark-mllib_2.11-2.4.0.jar:2.4.0]
  18.         at org.apache.spark.ml.Pipeline.fit(Pipeline.scala:136) ~[spark-mllib_2.11-2.4.0.jar:2.4.0]
  19.         at smartbix.datamining.engine.execute.node.feature.BucketizerNode$BucketizerEvent.fit(BucketizerNode.java:109) ~[EngineCommonNode-1.0-SNAPSHOT.jar:?]
  20.         at smartbix.datamining.engine.execute.node.feature.BucketizerNode$BucketizerEvent.fit(BucketizerNode.java:58) ~[EngineCommonNode-1.0-SNAPSHOT.jar:?]
  21.         at smartbix.datamining.engine.execute.node.train.FitNode.execute(FitNode.java:27) ~[EngineCommonNode-1.0-SNAPSHOT.jar:?]
  22.         at smartbix.datamining.engine.execute.node.GenericNode.start(GenericNode.java:101) [EngineCore-1.0-SNAPSHOT.jar:?]
  23.         at smartbix.datamining.engine.experiment.execute.node.ExperimentNodeExecutor.run(ExperimentNodeExecutor.java:40) [EngineExperiment-1.0-SNAPSHOT.jar:?]
  24.         at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) [?:1.8.0_202-ea]
  25.         at java.util.concurrent.FutureTask.run(FutureTask.java:266) [?:1.8.0_202-ea]
  26.         at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) [?:1.8.0_202-ea]
  27.         at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) [?:1.8.0_202-ea]
  28.         at java.lang.Thread.run(Thread.java:748) [?:1.8.0_202-ea]
  29. 2020-10-16 10:09:57.204 [85] INFO reflections.Reflections.scan:232 - Reflections took 54 ms to scan 7 urls, producing 88 keys and 501 values
  30. 2020-10-16 10:09:57.259 [85] INFO flow.ExperimentGenericFlow.fail:204 - Flow failed,(id:I8ac26e200174d26bd26beaea0174d3a424b40023,name:日利润挖掘)
  31. 2020-10-16 10:09:57.259 [85] INFO flow.ExperimentGenericFlow.close:235 - Flow closed.(id:I8ac26e200174d26bd26beaea0174d3a424b40023)
  32. 2020-10-16 10:09:57.260 [85] INFO flow.ExperimentSparkFlowContext.close:34 - clear active session
复制代码

回复

使用道具 举报

高级模式
B Color Image Link Quote Code Smilies
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

6回帖数 0关注人数 9885浏览人数
最后回复于:2020-10-16 10:29
快速回复 返回顶部 返回列表