七月上旬更新速递丨 聚焦集成、安全与AI深度进化

更新亮点: 本次重点强化系统集成能力与AI认知升级,新增4大核心模块9项资源,优化4项资源,点击标题了解(持续互动赢麦豆,解锁高阶技能)

重点推荐:《场景化数据分析实战》课程操作手册

配套六月王炸课程的全套落地指南,手把手教你复现实战场景!

二、实战技巧分享

高效处理资源集成难题》→ 从基础出发,深入探究集成的秘密

三、开发技能突破

第三方系统调用Smartbi接口》→讲解系统集成时的jar包获取,以及集成时代码调用的基本流程。

集成接口介绍》→梳理Smartbi目前提供的接口,以及不同接口的调用流程。

AI每日一学

DeepSeek-R1-0528模型升级:推理与生态的双重升级》→ 解析模型性能提升40%的关键技术 (技术前沿)

简单总结一下机器学习中的几种常见的学习方式与区别》→ 监督/无监督/强化学习差异与应用场景图解 (基础重构)

五、资源更新

CAS单点登录 V2版》上线→ 接入到 CAS 平台中,并实现单点登录

组织/用户/角色信息管理API接口》上线→ 一套 HTTP API的组织、用户、角色信息管理接口

竹云统一身份认证平台组织用户同步对接》上线→ Smartbi封装对应的服务接口,给竹云的统一身份认证平台实时调用,完成组织、用户和角色信息的实时同步。

交互式仪表盘支持自定义字体》优化→ 修复了文本组件编辑状态不生效的问题

只允许外网某种移动端APP访问》优化→ 针对V11版本,增加了钉钉、企业微信访问限制功能

AD域(LDAP/LDAPS)登录验证》优化→ 修复了“更新白名单状态之前没有判断判断用户是否存”的问题

元数据分析落地到知识库》优化→ 增加获取资源创建者的逻辑判断,对空值空对象等情况做优化

麦粉社区
>
帖子详情

【AI每日一学】介绍一下大模型的分类

AIChat 发表于 2025-6-3 09:39
发表于 2025-6-3 09:39:19

        麦粉们,知识升级继续!前面我们深入探讨了企业拥抱AI的战略路径和五个关键等级,是不是感觉打开了新世界的大门?光知道理论可不够,实战巩固才能记得牢!最快全部答对的前三名麦粉,依然将收获20麦豆惊喜奖励!(答案就藏在昨天的[企业该如何拥抱AI?企业拥抱AI有哪几个等级?] 宝藏贴里哦~)火速回顾,麦豆等你来拿!


AI知识小问答(知识巩固)


1、企业拥抱AI的五个等级中,哪个等级标志着AI开始参与核心决策过程,提供动态建议并提升决策科学性?


A. 工具化应用


B. 流程优化


C. 决策增强


D. 系统自治


E. 生态重构


2、某零售企业利用AI动态调整库存分配策略,显著优化了跨部门的供应链协作效率。这主要体现了企业拥抱AI的哪个等级?


A. 工具化应用


B. 流程优化


C. 决策增强


D. 系统自治


E. 生态重构


3、企业拥抱AI的最高等级“生态重构”的核心特征是什么?


A. 用AI处理单一、重复性高的简单任务


B. 实现端到端的闭环自动化运作


C. 重塑商业模式,创造全新价值网络和跨领域融合


D. 深度嵌入业务流程,优化部门协作


E. 仅作为辅助工具提升基础效率


 


        经过这场关于AI企业应用等级的头脑风暴,相信大家对AI如何从“工具”一步步跃升为“变革者”有了更清晰的认识! 那么,支撑这些不同等级应用、尤其是驱动“决策增强”、“系统自治”乃至“生态重构”的核心引擎又是什么呢?答案就在于日益强大的大模型技术!它们正成为企业智能化转型不可或缺的“超级大脑”。


       今天,我们就来深入剖析大模型的世界,看看它们是如何按数据类型和应用层级进行分类的,解锁企业驾驭AI浪潮的底层技术密码


 


大模型的分类(今日学习)


1.1. 按照输入数据类型的不同,大模型主要可以分为以下三大类:


语言大模型(NLP):


       是指在自然语言处理(Natural Language Proc essing,NLP)领域中的一类大模型,通常用于处理文本数据和理解自然语言。这类大模型的主要特点是它们在大规模语料库上进行了训练,以学习自然语言的各种语法、语义和语境规则。例如:GPT系列(OpenAI)、Bard(Google)、文心一言(百度)。


 


视觉大模型(CV):


       是指在计算机视觉(Computer Vision,CV)领域中使用的大模型,通常用于图像处理和分析。这类模型通过在大规模图像数据上进行训练,可以实现各种视觉任务,如图像分类、目标检测、图像分割、姿态估计、人脸识别等。例如:VIT系列(Google)、文心UFO、华为盘古CV、INTERN(商汤)。


 


多模态大模型:


       是指能够处理多种不同类型数据的大模型,例如文本、图像、音频等多模态数据。这类模型结合了NLP和CV的能力,以实现对多模态信息的综合理解和分析,从而能够更全面地理解和处理复杂的数据。例如:DingoDB多模向量数据库(九章云极DataCanvas)、DALL-E(OpenAI)、悟空画画(华为)、midjourney。


 


1.2. 按照应用领域的不同,大模型主要可以分为L0、L1、L2三个层级:


通用大模型L0:


        是指可以在多个领域和任务上通用的大模型。它们利用大算力、使用海量的开放数据与具有巨量参数的深度学习算法,在大规模无标注数据上进行训练,以寻找特征并发现规律,进而形成可“举一反三”的强大泛化能力,可在不进行微调或少量微调的情况下完成多场景任务,相当于AI完成了“通识教育”。


 


行业大模型L1:


        是指那些针对特定行业或领域的大模型。它们通常使用行业相关的数据进行预训练或微调,以提高在该领域的性能和准确度,相当于AI成为“行业专家”。


 


垂直大模型L2:


        是指那些针对特定任务或场景的大模型。它们通常使用任务相关的数据进行预训练或微调,以提高在该任务上的性能和效果。

发表于 2025-6-3 15:09:37
CBC

很喜欢出答案是C的题目嘛
打赏人数1麦豆 +20 收起 理由
Smartbi社区管理员 + 20 老太太摔倒了我都不扶,就服你.

查看全部打赏


回复

使用道具 举报

高级模式
B Color Image Link Quote Code Smilies
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

2回帖数 0关注人数 340浏览人数
最后回复于:2025-6-3 15:09
快速回复 返回顶部 返回列表