一月下旬新内容速递丨地理智能、函数实战与新春启航

年末将至,智慧不停!一月下旬更新聚焦地理智能、函数实战、二次开发与新春趣味活动,助你在数据探索中持续突破!

一、图表应用精选

【地图】GIS地图:告别平面报表,激活你的业务“地理智能”》→学习GIS地图应用,实现业务数据与地理信息的深度融合。
【散点图】商业世界的“关系侦探”》→掌握散点图在商业分析中的实战应用,洞察变量间的隐藏关系。

二、二次开发视频更新

Excel导入模板扩展数据处理类》→如何让导入的“1”和“0”自动变成“是”和“否”

三、函数应用进阶

【函数课堂】Fixed :数据计算中的“定海神针”》→系统讲解Fixed函数的使用场景与技巧,助你掌握数据计算的稳定性关键。

四、插件更新

离线导出功能集成阿里云OSS》→新增离线导出至阿里云OSS功能,提升数据导出安全性与存储灵活性。

五、新年活动进行中

新年第②弹|新春知识擂台:智慧解码,喜迎新年!》→新春特别活动,智慧解码挑战,喜迎新年好运!

六、任务持续上线

【图表应用】GIS地图诊断市场盈亏,制定精准策略》→掌握GIS地图分析技能,精准诊断市场表现,助力策略制定。
【函数】Fixed函数实战任务》→深入Fixed函数实战应用,提升数据计算稳定性和精准度。
【图表应用】散点图:你的“广告效果侦查局”已上线!》→运用散点图分析广告效果,成为数据驱动的“侦查高手”。
【新年活动】智慧解码擂台:挑战你的数据脑力!》→参与数据解码挑战,激活你的逻辑思维与分析能力。


地理智能赋能业务,函数实战夯实基础,新春活动智趣相融——一月下旬,与数据共赴新年新征程!

麦粉社区
>
帖子详情

学习数据挖掘需要那些基础知识?

数据挖掘 发表于 2019-11-12 10:18
发表于 2019-11-12 10:18:53

入门推荐你看《机器学习实战》,不需要你跑去学习算法和数据结构,不需要解析几何的知识,但是数理统计的基础你必须要有,期望、方差、常用的几种概率分布,尤其注意一下条件概率,因为朴素贝叶斯模型你一定要懂,线性代数至少你要明白矩阵乘法、行列式计算,再就是微积分知识,不然你看不懂所有基于梯度下降法的文献,行业内用的比较多的是c++,java和python,推荐你用python,很多模型不需要你造轮子,python有相关的第三方模块,很方便。

数据挖掘涉及的内容比较泛,机器学习、数据挖掘、人工智能,但实际上这些知识大多是相通的,机器学习实战这本书是我看的启蒙书里很好的一本了,该有的都有,难度较小,有理论有实践,可以较快的对各种知识有个大概的了解,但是想要长期在这个行业发展,还需要学习更多的知识,比如说提到回归模型,你不仅仅要知道最小二乘法,你还要想到怎么进行数据清洗、哪些数据需要清洗,怎么规范数据,数据是否过多,要不要进行归约和降维,采用哪种回归模型,精确度大致要达到什么水平,要不要考虑过拟合和欠拟合,要不要进行交叉验证,几折交叉验证效果好,如果回归模型不适用,有哪些备选方案。比如说决策树模型,书上简单的讲了个if-then就完了,按照什么规则生成树,怎么分层,要不要剪枝,最终的效果怎么样,造成误差的原因是模型太复杂还是太简单,怎么综合其他模型对决策树进行改进,数据的聚类方法用k均值还是DBSCAN,需要对数据进行分类的时候要考虑数据量大不大,SVM还是神经网络,数据量计算机吃不吃得消,一次吃不消该怎么做,等你对这些有了大致的了解之后,好好看看《统计学习方法》这本书,深入地了解一下理论部分,看一看核心部分的数学模型,看一看如何算法实现,着重理解一下拉格朗日微分法和拉格朗日对偶,解决等式约束和不等式约束很有用,这个也是使用智能算法尝试解决NP完全问题的一个结合点。

除了看书以外,其他时间全部用在学习编程上,python常用的numpy、matplotlib、scipy、sklearn、nltk这些包你都要大致了解怎么用,推荐你看看图灵程序设计丛书里的《python学习手册》《python自然语言处理》《python科学计算》,至少要知道怎么定义类、方法、属性,常用模块里有哪些好用的方法,常见的异常怎么排除,其他的在有时间的时候随用随学,至于算法和数据结构,有时间的话看看《算法导论》,肯定有所收获。


发表于 2020-6-15 11:10:18
学习中
回复

使用道具 举报

高级模式
B Color Image Link Quote Code Smilies
您需要登录后才可以回帖 登录 | 立即注册

1回帖数 0关注人数 10297浏览人数
最后回复于:2020-8-30 20:47

社区

指南

快速回复 返回顶部 返回列表