九月上旬更新速递丨 AI赋能、技术实战与智能探索

AI浪潮席卷,九月更新携智能发布会、实战经验与开发进阶强势登场!助您紧跟技术前沿,玩转数据智能!

重点推荐AI发布会火热预热!Agent BI是什么?Smartbi AIChat 全新升级发布会为您揭晓!

现有预热活动【智能体降临,未来已来!】解锁Smartbi AIChat V4超能力,参与即有机会赢专属好礼,抢先体验AI新纪元!更推出全新《十分钟完整体验AIchat》课程视频,仅需10分钟,即可使用本地数据快速体验AIChat全部功能,轻松入门智能分析!

一、任务持续上线

特征工程和数据预处理有什么区别?强化记忆,巩固学习成果。
SmartBI玩转Top N分析,轻松揪出数据》→检验分析能力,突破业务洞察瓶颈。

二、实战技巧分享

SmartBI同比环比分析大揭秘:让数据“笑”出真相!》→让数据不再沉闷,让趋势跃然纸上!

SmartBI玩转Top N分析,轻松揪出数据"尖子生"!》→面对海量数据,如何高效地提取最有价值的信息,快速识别关键数据项

、开发技能突破

扩展包简介→通过了解扩展包的实现原理和作用,让我们对扩展包有大致的认知。

四、AI每日一学

LLM 中的 Token 和 Embedding 到底是啥?》→深入浅出解析自然语言处理中的基础概念,夯实AI理解基石。

特征工程和数据预处理有什么区别?→厘清特征处理与数据清洗的边界,为模型训练铺平道路。

注意力机制、自注意力机制、多头注意力揭秘Transformer核心机制,助力理解现代AI模型架构。


为进一步提升认证服务的质量与体验,我们对认证业务进行全面优化升级。更多详情请看→Smartbi认证考试优化升级公告



麦粉社区
>
帖子详情

python学习篇-pandas库(八)

数据挖掘 发表于 2019-12-24 15:24
发表于 2019-12-24 15:24:00
本帖最后由 chenshuo 于 2019-12-24 17:14 编辑

替换操作
函数DataFrame()
参数to_replace:需要替换的部分,可为str, regex, list, dict, Series, int, float, or None
参数value:用来替换部分,可为scalar, dict, list, str, regex, default None
参数inplace:默认False,True:直接修改原对象;False:创建一个副本,修改副本,原对象不变。
参数regex:默认False,为True:替换的部分为正则表达式
参数method: 可为‘pad’, ‘ffill’, ‘bfill’, None


创建数据集
  1. import pandas as pd
  2. import numpy as np
  3. data = {'animal': ['cat', 'cat', 'snake', 'dog', 'dog', 'cat', 'snake', 'cat', 'dog', 'dog'],
  4. 'age': [2.5, 3, 0.5, np.nan, 5, 2, 4.5, np.nan, 7, 3],
  5. 'visits': [1, 3, 2, 3, 2, 3, 1, 1, 2, 1],
  6. 'priority': ['yes', 'yes', 'no', 'yes', 'no', 'no', 'no', 'yes', 'no', 'no']}

  7. labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']
  8. df1 = pd.DataFrame(data, index=labels)
  9. df1
复制代码
1、数值替换

将值为1替换成6
  1. df2 =df1.copy()#复制
  2. print(df2)
  3. df2.replace(1,6)
复制代码
943145e0182aa21e1b.png

2、列表替换
将cat替换成mouse,yes替换成maybe
  1. df2 =df1.copy()#复制
  2. print(df2)
  3. df2.replace(['cat','yes'],['mouse','maybe'])
复制代码
60695e01844ed53c6.png

使用方法bfill,向后替换,详情可参考python学习篇(七)
  1. df2 =df1.copy()#复制
  2. print(df2)
  3. df2.replace(['cat','yes'],method='bfill')
复制代码
693995e0184f6a0114.png

3、字典替换
将数据集中的cat替换成mouse,将1替换成100
  1. df2 =df1.copy()#复制
  2. print(df2)
  3. df2.replace({'cat':'mouse',1:100})
复制代码
585025e0188860f9be.png
将数据集中animal列中cat替换成snake
  1. df2 =df1.copy()#复制
  2. print(df2)
  3. df2.replace({'animal':'cat'},'snake')
复制代码
968555e01a6f649afd.png
或者
  1. df2 =df1.copy()#复制
  2. print(df2)
  3. df2.replace({'animal':{'cat':'snake'}})
复制代码
191485e01a8020ee0d.png
4、正则替换
将do*的字符串替换成mouse
724345e01d69adef3a.png
976005e01d6307cf55.png

或者
449105e01d6aedbc36.png
5、替换成None
  1. df2 =df1.copy()#复制
  2. print(df2)
  3. df2.replace({'yes':'None'})
复制代码
891185e01d6e1285f5.png

发表于 2019-12-24 17:16:13
regex=r'^do.$' 这部分代码会使代码框 变乱
回复

使用道具 举报

高级模式
B Color Image Link Quote Code Smilies
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

1回帖数 0关注人数 6727浏览人数
最后回复于:2019-12-24 17:16
快速回复 返回顶部 返回列表